Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Endoskop

Aus Jewiki
Zur Navigation springen Zur Suche springen

Ein Endoskop (griechisch ἔνδον éndon ‚innen‘; σκοπεῖν skopein ‚beobachten‘) ist ein Gerät, mit dem das Innere von lebenden Organismen, aber auch technischen Hohlräumen untersucht oder gar manipuliert werden kann. Ursprünglich für die humanmedizinische Diagnostik entwickelt, wird es heute auch für minimal-invasive operative Eingriffe an Mensch und Tier sowie in der Industrie zur Sichtprüfung schwer zugänglicher Hohlräume eingesetzt.

Grundarten und Arbeitsdurchmesser

Zu den Endoskopen zählen die starren und flexiblen Endoskope und deren Unterarten. Für Endoskope werden herstellerbezogen oft unterschiedliche Namen verwendet, so z. B. für starre Endoskope: Boreskope oder auch Boroskope, Technoskope, Autoskope, Intraskope; für flexible Glasfaser-Endoskope u. a. Fiberskope oder Flexoskope.

Gebräuchliche Arbeitsdurchmesser von starren Boreskopen sind 1,6 bis 19 mm. Halbstarre Boreskope (auch elastische oder semiflexible genannt) sind ab 1,0 mm, flexible Endoskope von 0,3 bis 15 mm und Videoendoskope von 3,8 bis 12 mm erhältlich.

Starre Endoskope

Starres Endoskop

Ein starres Endoskop (engl./techn. Rigid Borescope) leitet die Bildinformationen des zu Untersuchenden Objektes bzw. Raumes durch ein Linsensystem im Inneren des Endoskopschaftes an das Okular weiter. Beispiele sind das technische Boreskop (siehe unten) und med. das Arthroskop und Zystoskop.

Stark verbreitet ist das von Harold H. Hopkins entwickelte Stablinsensystem. Hier wird das Licht durch Stablinsen aus Quarzglas geleitet und an Luftlinsen zwischen den Stäben gebrochen. Diese sehr lichtstarke Bauweise ermöglicht kleinere Linsendurchmesser. Die meisten aktuellen Endoskope bieten durch einen Fokussierungsring in der Nähe des Okulars die Möglichkeit das Bild auch für Brillenträger auf die optimale Schärfe einzustellen. Das für die Untersuchung/Inspektion notwendige Licht der Lichtquelle wird über den angeschlossenen Lichtleiter, ebenfalls im Inneren des Schaftes durch Glasfaserbündel an die Spitze des Endoskopes transportiert. Der Preis eines starren Endoskopes hängt von der Güte der verwendeten Linsen, den Blick/Sichtwinkeln des Objektivs und der Arbeitslänge bzw. dem Arbeitsdurchmesser ab. Im Mittel handelt es sich hier um einen Betrag im eher niedrigeren vierstelligen Eurobereich.

Starre Endoskope mit objektivseitig reflektierendem Schwenkprisma können in Hohlräumen zur Seite blicken. Durch Drehen des Endoskops in seiner Hauptachse und Schwenken des die Blickrichtung davon ablenkenden Prismas lässt sich ein größerer Raumwinkel im Hohlraum abtastend betrachten. Ähnliches leistet schon ein kleiner polierter Metallspiegel, der durch biegsamen Draht und Aufsteckhülse mit dem Endoskopobjektivkopf verbunden ist.

Flexible Endoskope

Flexibles Endoskop (Fiberskop)
Flexibles Endoskop schematisch (Fiberskop)

Bei einem flexiblen Endoskop (bzw. Flexoskop oder engl. Fiberscope, die Namensgebung ist z. T. Herstellerabhängig) werden Bild und Licht über Glasfaserbündel übertragen. Beispiele sind das technische Flexoskop (siehe unten) und das med. Gastroskop, Koloskop und Bronchoskop.

Ab einem praktikablen Durchmesser sind Fiberskope/Videoskope auch mit auswechselbaren statt festmontierten Objektiven (Vor/Seit oder Rückwärts) sowie Arbeitskanälen zum Einführen von mikromechanischen Geräten (kleine Zangen oder Greifer) in den Untersuchungs- bzw. Inspektionsraum erhältlich. Flexible Glasfaser-Endoskope (Fiberskope) und Video-Endoskope (Videoskope) besitzen meist eine über eingebaute Bowdenzüge fernsteuerbare Gerätespitze. Diese kann je nach Modell und Durchmesser nach 2 (auf-ab) oder nach 4 Seiten (auf-ab und rechts-links) teilweise bis zu 180° abgewinkelt werden. Die Länge dieser abwinkelbaren Spitze kann je nach Durchmesser zwischen 30 und 70 mm liegen. Im Handgriff des Gerätes ist eine Mechanik eingebaut, die über Kippbügel oder Handräder auf die Bowdenzüge einwirkt und diese Bewegung der Spitze ermöglicht.

Siehe auch: Medizinische Endoskopie und Mikromechanik

Videoendoskope

Videoendoskop im Querschnitt

Die jüngste Unterart der flexiblen Endoskope bilden die Videoendoskope, oft auch Videoskope genannt (engl. Videoscope bzw. Videoprobe), wobei die Namensgebung herstellerabhängig ist. Videoendoskope eröffnen ein neues Kapitel in der modernen Endoskopie, da sie zur Bilderzeugung und -übertragung digitale Technologien nutzen. Ein am Objektiv des Videoendoskopes angebrachter CCD- bzw. CMOS-Chip (siehe auch: Digitalkamera) erzeugt ein digitales Bild des Untersuchungsobjektes und leitet es an die folgenden Baugruppen des Videoendoskopes weiter. Meist bereitet dann ein Prozessor diese Daten auf, sendet sie zur Ausgabe an einen Monitor, oder legt sie auf einer Festplatte oder anderen Datenspeichern ab. Videoendoskope ermöglichen je nach Ausstattungsvariante das Einfrieren und Speichern von Bildern sowie mehrstündige Videoaufzeichnungen für eine nachträgliche Aufbereitung/Optimierung oder auch das Vermessen eines Bildes bzw. Objektes. Auch diese Gerätetechnik besitzt eine fernsteuerbar, abwinkelbare Gerätespitze, nach 2 oder 4 Richtungen. Diese können mechanisch oder elektronisch gesteuert werden. Die mechanische Steuerung erfolgt über ein kleines Getriebe über Kipphebel oder Drehräder. Einige Videoskope haben anstelle der Mechanik kleine Elektromotoren eingebaut, die über einen Joystick die Bowdenzüge steuern.

Generell kann zwischen zwei Leistungsgruppen unterschieden werden. In der Regel ist der CCD-Chip dem Glasfaser-Endoskop und dem CMOS-Videoscope von der optischen Bildqualität überlegen, aber das flexible Endoskop und vor allem das CMOS-Videoscope sind dagegen etwas preiswerter. Die Bildqualität der Glasfaser-Endoskope sind nicht mit der Pixelanzahl des CCD oder CMOS-Sensors gleichzusetzen. Die beste Bildqualität hängt immer von der Kombination von Videosensor, optischem Linsensystem, Lichtmenge und Bildausgabe (= großer, kontrastreicher, farb- und detailgetreu auflösender Monitor) ab. Neuerdings kommen bei Videoskopen anstelle der externen Lichtprojektoren, auch LED-Leuchtkörper zum Einsatz. Diese können in der Gerätespitze eingebaut sein, oder auch im Handgriff. Im letzteren Fall wird dann auch da das Licht über eingebaute Glasfasern nach vorn zur Spitze geleitet. In der Gerätespitze eingebaute LEDs haben eine sehr gleichmäßige Ausleuchtung. Jedoch erreichen LEDs momentan noch nicht die Leuchtkraft eines Xenon-Lichtprojektors.

Bekannte Hersteller digitaler Videoendoskope sind Olympus, Pentax Medical, Fujinon und Karl Storz.

Basiskomponenten

Endoskopische Grundausrüstung

Zu einem einfachen Endoskopset gehören:

  1. Lichtquelle
  2. Lichtleiter
  3. Endoskop (mit Bildleiter)

Einzelne Komponenten verschiedener Hersteller lassen sich in der Regel nicht ohne weiteres kombinieren. Ein Lichtleiter oder Endoskop des einen Herstellers kann beispielsweise nicht ohne weiteres an einer Lichtquelle eines anderen Herstellers betrieben werden. Namhafte Hersteller bieten hierfür auf Nachfrage passende Adapter an. Zur Erleichterung der praktischen Arbeit mit Endoskopen werden von der Industrie verschiedene Haltearmsysteme[1][2][3] angeboten.

Moderne Xenonlampe
Prinzip eines Bildleiters aus Glasfasern
Bild vom Inneren eines Uhrenwerks mittels Glasfaser-Bildleiter. Die einzelnen Fasern und Farbfehler sind deutlich zu erkennen, welche die schlechte Bildqualität bedingen.

Lichtquellen

Insbesondere die Nutzung digitaler Bildübertragungstechniken (Videoendoskopie) mittels CCD-Chips machte den Einsatz teurer Xenon-Lampen notwendig. Deren Lichtstärke ist zwar exzellent, ihre Standzeit wird jedoch stark von den jeweiligen Ein/Ausschaltzyklen bestimmt. Es gilt: Je mehr Zyklen desto geringer die Standzeit.

Leuchtmittel wie Xenon-Lampen entwickeln während des Betriebes enorm viel Wärme, welche zum größten Teil durch den Infrarotanteil des Leuchtmittelspektrums verursacht wird. Daher muss verhindert werden, dass der IR-Anteil zum Lichtaustritt des Endoskopes gelangt. Moderne Lichtquellen sind daher in der Lichtstärke regelbar, durch einen Ventilator gekühlt und die infrarote Strahlung wird durch dichroitische Hohlspiegel, sowie (zusätzlich) durch Wärmeschutzfilter vor dem Lichtleiter, weitgehend aus dem Lichtspektrum entfernt. Diese Systeme werden als Kaltlichtquellen und die Leuchtmittel als Kaltlichtspiegellampen bezeichnet. Eine weitere, und aufgrund des niedrigen Strom/Kühlungsbedarfs, von Vorteil geprägte Entwicklung sind Geräte mit Leuchtdioden (Light Emitting Diode, LED) als Lichtquelle. Die Lichtleistung von LEDs kann sich jedoch zurzeit noch nicht mit der von Xenonlampen messen. Dennoch öffnet diese Technik neue Einsatzgebiete und bietet speziell für Lichtquellen im Akkubetrieb eine interessante Alternative.

Lichtleiter

Für endoskopische Lichtleiter werden hauptsächlich Glasfasern verwendet. Es gibt aber auch Lichtleiter, die das Licht mittels eines Gels als Transportmedium leiten können. Gellichtleiter oder auch Flüssigkeits-Lichtleiter genannt, bieten eine stärkere Lichtausbeute was besonders für große Räume und die digitale Endoskopie im Allgemeinen von Vorteil ist. Die Flüssigkeitslichtleiter sind in der Regel besser für die Übertragung von UV-Licht geeignet, als Glasfasern. Gel/Flüssig-Lichtleiter sind in der Verwendung etwas unhandlicher und nicht so biegsam, sowie etwas teurer, als Glasfaser-Lichtleiter. Ohne angeschlossenen Lichtleiter sieht man zwar ein Bild durch das Endoskop, dieses ist jedoch zu dunkel um in geschlossenen Räumen verwertbare Ergebnisse zu erzielen.

Bildleiter

Bildleiter sind aus vielen Tausend einzelnen Glasfasern, mit einem Durchmesser von 7 bis 10 µm aufgebaut. Dies entspricht einer Auflösung je nach Durchmesser von 3.000 bis 42.000 oder 75 × 45 bis 240 × 180 Bildpunkten (Pixeln). Pro Faser kann jeweils eine Helligkeits- und Farbinformation übertragen werden. Der Moiré-Effekt, der durch die Überlagerung des Faserrasters mit dem CCD-Raster entsteht, kann die Qualität des Bildes vermindern, weshalb vermehrt Videoskope bzw. Video-Endoskope mit eingebautem CCD Chip am distalen Ende verwendet werden.

Messtechnik

Auf dem Gebiet der Messtechnik bieten verschiedene Hersteller Messverfahren an. Jede Messtechnik birgt für sich, für den jeweiligen Verwendungszweck, Vor- und Nachteile. Insbesondere in der technischen Endoskopie werden in vielen Anwendungsgebieten Messsysteme eingesetzt, die heute zum Teil erstaunlich genaue Ergebnisse liefern können. Anwendungsgebiete hierfür sind Flugzeugturbinen oder Kraftwerksbereiche. Es gibt derzeit vier verwendete berührungslose Messverfahren die in Videoendoskopen, teilweise auch in starren Endoskopen eingesetzt werden:

  • Schatten/Videobildmessung („Shadow“)
  • „2-Punkt-Laser-Messung“ – Namensgebung z. T. herstellerabhängig

Diese Messarten liefern nur bei einer senkrechten Ausrichtung des Messendoskopes auf die zu messenden Oberfläche eine exakte Messung.

Viel genauer sind die Messverfahren:

  • Vergleichsmessung („Stereo“)
  • Lasermessung („Multipoint“)

Aktuelle Forschung befasst sich mit der Möglichkeit 3D-Daten endoskopisch zu erfassen. Hierzu wird meist der Ansatz der Streifenprojektion als Variante der flächigen Triangulation eingesetzt. Abhängig von den eingesetzten Optiken können technische Innengeometrien mit Auflösungen im unteren µm-Bereich erfasst und ausgewertet werden.

Wie bei jedem Messgerät hängt die Messgenauigkeit eines Endoskopmesssystems entscheidend von der Schulung und Erfahrung des Anwenders ab. Ein komplett ausgestattetes, messfähiges Videoendoskop kann einen hohen fünfstelligen Eurobetrag kosten.

Optik

Sichtwinkel und Wirkung
Blick und Sichtwinkel

Gesetzmäßigkeiten

Im Zusammenhang mit dem Arbeitsdurchmesser eines Endoskopes gilt:

Je größer der Durchmesser, desto heller und weiter das Bild.

Gemäß den Gesetzen der Optik ergibt sich weiter folgender Zusammenhang zwischen Sichtwinkel und Vergrößerungsfaktor:

Großer Sichtwinkel = geringe Vergrößerung (Weitwinkel in der Fotografie)
Kleiner Sichtwinkel = starke Vergrößerung (Teleobjektiv in der Fotografie)

Im Zusammenhang zwischen der Vergrößerung und dem Abstand von Objektiv und dem zu untersuchenden Gegenstand gilt:

Der Vergrößerungsfaktor beschreibt die Objektgröße im Bild relativ zur realen Objektgröße
und weiter:
Der Vergrößerungsfaktor verhält sich invers proportional dem Abstand: Objektiv/Gegenstand (abhängig von weiteren Faktoren)

Objektive

Blickwinkel in Grad ° Blickrichtung / Bezeichnung
0 Geradeausblick (oblique or direct view)
30–80 Vorausblick (fore oblique or front view)
90 Seitblick (right angle or lateral)
110–120 Rückblick (retrograde or rear)

Kennzeichnung

Endoskope werden mit einem Schlüssel ihrer Merkmale gekennzeichnet, dieser findet sich in der Regel am Schaft oder dem Griffstück als Gravur wieder. Es gilt:

Arbeitsdurchmesser · Blickwinkel · Sichtwinkel

Ein Endoskop mit folgenden Angaben: 6-70-67 hätte demzufolge die Daten:
Arbeitsdurchmesser = 6,00 mm, Blickwinkel = 70°, Sichtwinkel = 67°.
Ein eher vergrößerndes Endoskop mit einem vorausblickenden Objektiv.

Zeittafel

  • 1806 – Philipp Bozzini (Arzt/Frankfurt) konstruiert erstmals ein starres medizinisches Endoskop und schickt es an die Medizinische Universität Wien zur Begutachtung; dort wird es an Leichen ausprobiert und positiv beurteilt.[4]
    Das Bozzini Endoskop galt nach dem Zweiten Weltkrieg als verschollen, wurde jedoch in den USA wiedergefunden und 2001 über die „Internationale Nitze-Leiter-Forschungsgesellschaft für Endoskopie“ an das Wiener „Institut für Geschichte der Medizin“ zurückgegeben.[4] Über seine damalige Anwendung gibt es keinen Beleg.
  • 1850/51 – Hermann von Helmholtz entwickelt den Augenspiegel und nutzt ihn praktisch
  • 1855 – Weiterentwicklung des „Bozzini“ Endoskopes durch den französischen Arzt Antonin J. Desormeaux. (Er ersetzte die von Bozzini als Lichtquelle verwendete Kerze durch eine Gasbogenlampe.)
  • 1879 – Der Dresdner Arzt Maximilian Nitze stellt sein mit Hilfe des Wiener Handwerkers Josef Leiter hergestelltes „Zystoskop“ vor
  • 1881 – Johann von Mikulicz begründet die Ösophagoskopie und Gastroskopie
  • 1912 – urologisches Zystoskop von Otto Ringleb
  • 1958 – Entwicklung des ersten flexiblen Endoskopes (Flexoskop) durch Basil Hirschowitz
  • 1967 – Als Gynäkologe begründet Kurt Semm die moderne Endoskopie
  • 1976 – Entwicklung des ersten Desinfektionsgerätes für flexible Endoskope durch Siegfried Ernst Miederer und Arbeitsgruppe[5] an der Universität Bonn.
  • 2000 – Einführung der Kapselendoskopie[6] in die Praxis

Pionierunternehmen der Endoskopie sind Olympus, Karl Storz und die Richard Wolf GmbH.

Anwendungsgebiete

Allgemein

Das Einsatzspektrum der Endoskopie ist breit gefächert. Endoskope werden neben den bekannten Einsatzgebieten in Medizin und Technik auch in diversen anderen Bereichen eingesetzt, wie z. B.:

Technisch

Endoskopischer Blick in ein Flugzeugtriebwerk

Die technischen Einsatzgebiete sind weitreichend, um nur einige zu nennen:

  • Bautenschutz – Überprüfung der Isolierung bei Altbauten/Sichtung auf Schädlingsbefall bei Holzbauten/Ursachenforschung bei Wasserschäden
  • Denkmalpflege – Große Denkmäler sind oftmals hohl und können mittels Endoskopie auf etwaige korrosive Vorgänge geprüft werden
  • Automobilindustrie – Hier wird das Endoskop hauptsächlich zur Prüfung von Hohlraumversiegelungen und Motoren (Verschleiß) eingesetzt.
  • Schiffsindustrie (Motoren)
  • Industrieanlagen (Kraftwerke, Rohrschweissnähte)
  • im Sanitärbereich zur Untersuchung defekter Leitungen
  • Luftfahrt

In der Luftfahrt wird die Endoskopie seit den 1950er-Jahren für die Wartung zum Beispiel von Flugtriebwerken eingesetzt. Unter Zuhilfenahme des Arbeitskanals und von Mikrowerkzeugen können auch kleinere Reparaturen an Triebwerkschaufeln durchgeführt werden. So etablierte sich in diesem Bereich der Begriff Boroskopie (v. engl. Borescope; bore „Bohrloch/Bohrung“). Das Flexoskop findet im Englischen seine Entsprechung als Flexiscope oder Flexoscope. Endoskopie (engl. Endoscopy) stellt den Oberbegriff für diese Technologie dar.

Rundblick-Endoskope

Schnittzeichnung Rundblickendoskop in einem Zylinder
Ringförmiges Bild einer Zylinderwand mit umlaufender Nut und Querbohrungen
Rundblickprisma an der Spitze eines Rundblickendoskops

Das Rundblickendoskop ist ein spezielles technisches Endoskop (engl. Borescope für Industrie-Endoskop, im Gegensatz zum medizinischen Endoskop) für die Inspektion von zylindrischen Hohlräumen. Ein Endoskop erzeugt im Normalfall ein rundes, scheibenförmiges Bild, ein Rundblickendoskop liefert dagegen ein ringförmiges Bild, d. h. in der Mitte der Austrittspupille befindet sich keine Bildinformation. Dies unterscheidet das Rundblickendoskop grundlegend auch vom Fischaugenobjektiv, bei dem sich die wesentliche Bildinformation in der Mitte der Austrittspupille befindet. Ein Fischaugenobjektiv schaut jedoch hauptsächlich nach vorn, das Rundblick-Prisma jedoch mehr zur Seite, dies jedoch ringsum (siehe Illustration).

Entstehungsgeschichte

Im Zuge steigender Material- und Qualitätsanforderungen werden industrielle Bauteile immer häufiger einer optischen Serienprüfung unterzogen. Bei unzugänglichen Oberflächen werden technische Endoskope als Hilfsmittel eingesetzt. Zur Innenprüfung zylindrischer Objekte, z. B. von einem Hydraulikzylinder, sind dies Endoskope mit einer seitlichen Blickrichtung, d. h. die optische Achse wird mittels Spiegel oder Prisma umgelenkt (vergleichbar mit einem Periskop). Zur vollständigen Erfassung der Oberfläche müssen Objekt und Endoskop zueinander linear verschoben und rotiert werden. Um die aufwändige Rotationsbewegung zu vermeiden, wurde versucht, die Umlenkspiegel durch kegelförmige Spiegel zu ersetzen, die mit der Spitze auf das Endoskop aufgesetzt wurden. Diese Konstruktionen waren mechanisch, optisch und in der Anwendungspraxis unbefriedigend und haben sich nicht etabliert. In der Endoskopie werden generell Umlenkprismen gegenüber Spiegeln bevorzugt. Spiegel sind sehr empfindlich bei Staub oder Schmutz und beeinträchtigen das Bild erheblich. Wenn man ein solches Prisma virtuell um die optische Achse des Endoskops rotiert, entsteht ein einfaches Rundblickprisma.

Erstmals wurde 1985 ein Geradeausblick-Endoskop vorn an der Spitze mit einem speziellen Prisma versehen. Das war eine Glaskugel, in die von vorn ein Kegel eingeschliffen wurde, der optisch verspiegelt wurde. Über diesen „Kegelspiegel“ konnte nun die Oberfläche eines Segmentes ringsum auf einen Blick betrachtet werden. Die Anforderung war damals die 100 %-Innenkontrolle an Auto-Hauptbremszylindern. Diese Teile, mit ihren gehonten Innenflächen mussten einwandfrei und ohne Lunker und Kratzer sein. Da es sich um ein wichtiges Sicherheitsteil am Auto handelt, war eine 100 % Kontrolle unumgänglich. Im Laufe der Jahre wurde diese Technik noch verfeinert und auch anderen Anwendungen und Anforderungen angepasst. Schleift man z. B. anstelle des Kegels einen Radius in die Glaskugel ein, dann erreicht man sogar einen Rückblick und das ringsum. Diese Rundblickprismen, die ein erheblich besseres Bild als Spiegel liefern, wurden ständig weiterentwickelt und erfüllen heute höchste Ansprüche, sind sogar für automatische Bildverarbeitung geeignet.

Bilderzeugung und -wirkung

Das Rundblickprisma besteht aus mehreren ineinander gefügten sphärischen Glasflächen. Es sammelt die gesamte 360°-Bildinformation von einem Längenabschnitt des Zylinders. Die Länge des Abschnittes hängt vom Bildwinkel (Sehfeld, FOV) des Rundblickprismas und dem Abstand der Oberfläche vom Endoskop ab. Bei direkter visueller Betrachtung oder Verwendung einer industrieüblichen Matrixkamera erscheint das Bild radial verzerrt. Die Verzerrung kann entweder über eine nachgeschaltete Bildverarbeitung beseitigt werden oder durch Verwendung einer ringförmigen Zeilenkamera, deren Streifenbilder aneinandergefügt eine verzerrungsfreie Abwicklung der Zylinderinnenwand liefern.

Medizinische Endoskopie

Endoskopie eines menschlichen Magens

Medizinische Endoskope haben die Untersuchung des Magen-Darmtraktes, der Lunge und auch der Gebärmutter revolutioniert. Sogar die ableitenden Tränenwege können endoskopisch untersucht werden.
Die ältesten und einfachsten noch im Gebrauch befindlichen Endoskope bestehen aus einem starren Rohr, durch welches das notwendige Licht hineingespiegelt wird und wodurch man mit dem bloßen Auge sieht. Daher spricht man volkstümlich von „Spiegelung“. Die längeren Geräte waren zusätzlich mit Linsen in einem Schlauch am vorderen Ende ausgestattet und ermöglichten erstmals passiv geringe Bewegungen.
Eine erste Weiterentwicklung bestand darin, ortsfern erzeugtes Licht mit Glasfaserbündeln an die Rohrspitze zu bringen. Der nächste Entwicklungsschritt war, auch die Bildinformation über flexible, geordnete Glasfaserbündel, die Bildleiter, zum Auge des Untersuchers zu übertragen. Erst hiermit wurde das Endoskop wirklich flexibel. Die aktive Steuerung des Gerätes erfolgt seither über vier eingearbeitete Bowdenzüge.

Eine medizinische Endoskopieeinheit umfasst über die unter Basis beschriebenen Komponenten hinaus:

  • zwingend
  1. einen Luftinsufflator oder eine Gaspumpe zum dosierten Aufblasen von Hohlorganen oder Körperhöhlen (Bauchhöhle), bei denen sonst die Wände auf die Optik fallen oder Details in Falten verdeckt würden.
    Im einfachsten Fall ist dies ein Gummiballon mit Ventil (bei der Rektoskopie, siehe unten), der von Hand betätigt wird. Bei flexiblen Endoskopien (Gastroskopie beispielsweise) wird eine drucklimitierte Pumpe verwendet und das Einblasen der Luft vom Endoskopiker mittels Fingerventilen bewirkt. Bei der Bauchhöhlenspiegelung hingegen benutzt man mengen- und drucklimitiert geregelte Automaten und zur Vermeidung einer Luftembolie wird CO2-Gas anstelle von Luft eingeblasen.
  2. einen Irrigator: im einfachsten Falle eine mit Kochsalzlösung gefüllte Spritze oder Infusionsflasche
  3. eine Absaugpumpe für Schleim und andere unerwünschte flüssige Inhalte der Hohlorgane
  • bedarfsweise
  1. einen Koagulator zur Blutstillung
  2. flexible Werkzeuge. Sie werden über Arbeitskanäle eingebracht.

Heutzutage wird, vor allem unter stationären Bedingungen, das Bild nicht mehr direkt mit dem Auge (weder am starren Rohrendoskop, noch am Okular des flexiblen Endoskops) betrachtet, sondern an einem oder mehreren modernen Monitoren, die die Farbinformation möglichst wenig verfälschen, und die die Arbeit und das Lehren (Kibitzen) ohne Qualitätsverlust bei Tageslicht ermöglichen. Dadurch eröffnet sich zusätzlich auch die Möglichkeit der Aufzeichnung auf Videoträger oder eine Übertragung in Hörsäle.

Eine interessante neuere Entwicklung ist die „Endoskoppille“ oder Kapselendoskopie: Eine Minikamera, die peroral in Form einer Pille eingenommen und durch die natürliche Peristaltik durch den Verdauungstrakt transportiert wird, nimmt in fortlaufender Serie Aufnahmen des Darms auf. Die Kapsel ist für den Einweggebrauch (once disposable) konzipiert. Diese Technik wie auch die Auswertung sind aufwendig, aber im Falle verborgener Blutungen oder kleiner Tumore im Dünndarm als „ultima ratio“ äußerst hilfreich. Ein zeitgleicher therapeutischer Eingriff wie bei den anderen endoskopischen Methoden ist derzeit nicht möglich.

Von großer Wichtigkeit ist die Desinfektion der flexiblen Geräte, die hitzeempfindlich und daher einfachen Methoden nicht zugänglich sind. Heute wird durch moderne Desinfektionsgeräte die Keimarmheit der Endoskope garantiert. Das erste Desinfektionsgerät wurde 1976 von einer Arbeitsgruppe um S.E. Miederer[5] entwickelt.

Vorbereitung in der medizinischen Endoskopie

Bei den meisten endoskopischen Untersuchungen erfolgt für den Betroffenen zur Erleichterung eine Prämedikation, das heißt, es wird ein Beruhigungsmittel, zum Beispiel Midazolam, oder das Narkosemittel Propofol gegeben.

Typisch medizinische endoskopische Untersuchungs- und Behandlungsmethoden

Anwendung eines Endoskops zur Biopsie
Anwendung eines Endoskops (Bronchoskop)
Training mit starrem Endoskop, Santiagodechile2007
  1. Spiegelung am Magen-Darm-Trakt
  2. Spiegelung des Atmungssystems
  3. Spiegelung des Mittelfells (Mediastinums)
  4. Spiegelung der Gelenke
  5. Spiegelung des Harnsystems
  6. Spiegelung des Auges und der Anhangsgebilde
  7. Spiegelung anderer Organe
  8. Spiegelung von Körperhöhlen
    • Spiegelung des Brustkorbs (Thorakoskopie). Diese und die folgende Methode benutzten aber ebenso wie die Arthroskopie keinen natürlichen Zugang.
    • Bauchhöhlenspiegelung (Laparoskopie)
  9. Im weiteren Sinne zählen zur Endoskopie auch:

Besonderheiten im Umgang

Endoskope sind Präzisionsinstrumente und müssen sorgfältig behandelt werden. Jegliche Beschädigung des Schaftes und allzu harte Schläge können zum Lösen bzw. Verrutschen der Linsen im Inneren führen. Ein typisches Anzeichen hierfür ist die Eintrübung der Okularoptik, die bei weiteren Beschädigungen auch zum Komplettausfall des Endoskopes führen kann.

Das Schaftende mit dem Prisma ist besonders gegen zu hohe Temperaturen (z. B. in der technischen Anwendung) zu schützen. Jeder Hersteller gibt eigene Empfehlungen hierfür an, als Richtwert gilt eine Obergrenze von +65 bis +70 Grad Celsius. Einige Anbieter erreichen bis zu 150 bis 200 Grad Celsius und mit speziellen Kühlvorrichtungen bis zu 650 Grad Celsius.

Wird der Glasfaserbildleiter eines Flexoskopes extrem stark gebogen oder gar beschädigt, können einzelne Glasfasern brechen, was sich durch kleine schwarze Punkte in der Optik des Flexoskopes bemerkbar machen wird.

Entwicklung

Aktuell wird in Zusammenarbeit von Forschungsgesellschaften und Herstellern an Endoskopen mit sehr kleinen Arbeitsdurchmessern gearbeitet. Durchmesser vergleichbar der Dicke eines menschlichen Haares sollen helfen, das Einsatzgebiet der Endoskopie in neue Bereiche auszudehnen, z. B.:

  • Untersuchungen bestimmter Hirnregionen
  • betäubungslose Untersuchungen, für die aufgrund der großen Durchmesser der Geräte heute noch eine Betäubung notwendig ist.

Eventuell werden bald auch CMOS-Bildsensoren in Videoendoskopen eingesetzt. Diese Art von Bildsensoren verspricht eine kostengünstigere Fertigung und weitere Vorteile in der Bildbearbeitung.

LEDs werden in ihrer Leistungsfähigkeit und Lichtausbeute immer besser, so dass es bereits Hersteller gibt, die sie in starren Videoendoskopen verbauen. LEDs erreichen heute eine Lichtausbeute von über 200 lm/W und der Stromverbrauch – wichtig bei akkubetriebenen Lichtquellen – ist geringer als bei herkömmlichen Lichtquellen.

Da die Handhabung von Instrumenten hohe Anforderungen an den Endoskopierenden hinsichtlich der Koordination der Instrumentes im Raum stellt, wird von Seiten der Industrie seit einigen Jahren die 3D-Technik zur Verfügung gestellt. Hierzu sind geeignete Instrumente Monitore und Brillen zur einwandfreien Bilddarstellung notwendig.

Normen

Siehe auch

Weblinks

 Commons: Endoskopie – Sammlung von Bildern, Videos und Audiodateien

Literatur

  • Armin Gärtner: Medizintechnik und Informationstechnologie – Bildmanagement. Band II. TÜV-Verlag, 2005, ISBN 3-8249-0941-3.
  • K. E. Grund, R. Salm: Systeme für die Endoskopie. In: Rüdiger Kramme (Hrsg.): Medizintechnik: Verfahren- Systeme- Informationsverarbeitung. Springer Medizin Verlag, Heidelberg 2007, ISBN 978-3-540-34102-4, S. 347–366.
  • Siegfried Ernst Miederer: Endoskopie. In: E. Thofern, K. Botzenhart: Hygiene und Infektionen im Krankenhaus. Gustav Fischer Verlag, Stuttgart / New York 1983, ISBN 3-437-10815-8, S. 465–472.
  • Jörg Reling, Hans-Herbert Flögel, Matthias Werschy: Technische Endoskopie: Grundlagen und Praxis endoskopischer Untersuchungen. Expert-Verlag, 2001, ISBN 3-8169-1775-5. (Kompakt und Studium / Band 597)
  • S1-Leitlinie Hygienemaßnahmen bei der Endoskopie der AWMF, Arbeitskreis „Krankenhaus- & Praxishygiene“. In: AWMF online (Stand 2012)

Einzelnachweise

  1. Beispiel für ein mit Druckluft betätigtes Haltearmsystem. abgerufen 1. Dezember 2008
  2. Beispiel für ein mechanisches Haltearmsystem. (PDF) abgerufen 1. Dezember 2008
  3. Beispiel für ein elektrisch betätigtes Haltearmsystem. (PDF) abgerufen 1. Dezember 2008
  4. 4,0 4,1 Weitgereist und heimgekehrt – der Lichtleiter des Philipp Bozzini, Faltblatt des Alumni-Club der Medizinischen Universität Wien, deren Institut für Geschichte der Medizin das Gerät 2001 zurückgegeben wurde
  5. 5,0 5,1 M. Tholon, E. Thofern, S. E. Miederer: Desinfection procedures of fiberscopes in endoscopy departments. Endoscopy. Bd. 8, Nr. 1, 1976, S. 24–29.
  6. 6,0 6,1 Video-Endoskopie: Mit einer Kapsel den Dünndarm inspizieren. In: Deutsches Ärzteblatt. Bd. 99, H. 28–29, 15. Juli 2002, Seite A-1950/B-1646/C-1539.
Dieser Artikel basiert ursprünglich auf dem Artikel Endoskop aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.