Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Lineare Unabhängigkeit

Aus Jewiki
(Weitergeleitet von Lineare Abhängigkeit)
Zur Navigation springen Zur Suche springen
Linear unabhängige Vektoren in ℝ3
Linear abhängige Vektoren in einer Ebene in ℝ3

In der linearen Algebra wird eine Familie von Vektoren eines Vektorraums linear unabhängig genannt, wenn sich der Nullvektor nur durch eine Linearkombination der Vektoren erzeugen lässt, in der alle Koeffizienten der Kombination auf den Wert null gesetzt werden. Äquivalent dazu ist, dass sich keiner der Vektoren als Linearkombination der anderen darstellen lässt.

Andernfalls heißen sie linear abhängig. In diesem Fall lässt sich mindestens einer der Vektoren (aber nicht notwendigerweise jeder) als Linearkombination der andern darstellen.

Zum Beispiel sind im dreidimensionalen euklidischen Raum die Vektoren , und linear unabhängig. Die Vektoren , und sind hingegen linear abhängig, denn der dritte Vektor ist die Summe der beiden ersten, d. h. die Summe der ersten beiden minus den dritten ergibt den Nullvektor. Die Vektoren , und sind wegen ebenfalls linear abhängig; jedoch ist hier der dritte Vektor nicht als Linearkombination der beiden anderen darstellbar.

Definition

Es sei ein Vektorraum über dem Körper und eine Indexmenge. Eine durch indizierte Familie heißt linear unabhängig, wenn jede hierin enthaltene endliche Teilfamilie linear unabhängig ist.

Eine endliche Familie von Vektoren aus heißt linear unabhängig, wenn die einzig mögliche Darstellung des Nullvektors als Linearkombination

mit Koeffizienten aus dem Grundkörper diejenige ist, bei der alle Koeffizienten gleich null sind. Lässt sich dagegen der Nullvektor auch nichttrivial (mit Koeffizienten ungleich null) erzeugen, dann sind die Vektoren linear abhängig.

Die Familie ist also genau dann linear abhängig, wenn es eine endliche Teilmenge gibt, sowie Koeffizienten , von denen mindestens einer ungleich 0 ist, so dass

Der Nullvektor ist ein Element des Vektorraumes . Im Gegensatz dazu ist 0 ein Element des Körpers .

Der Begriff wird auch für Teilmengen eines Vektorraums verwendet: Eine Teilmenge eines Vektorraums heißt linear unabhängig, wenn jede endliche Linearkombination von Vektoren aus nur dann den Nullvektor darstellen kann, wenn alle Koeffizienten in dieser Linearkombination den Wert null haben. Man beachte folgenden Unterschied: Ist etwa eine linear unabhängige Familie, so ist offenbar eine linear abhängige Familie. Die Menge ist dann aber linear unabhängig.

Andere Charakterisierungen und einfache Eigenschaften

  • Die Vektoren sind genau dann linear unabhängig, wenn sich keiner von ihnen als Linearkombination der anderen darstellen lässt.
    Diese Aussage gilt nicht im allgemeineren Kontext von Moduln über Ringen.
  • Eine Variante dieser Aussage ist das Abhängigkeitslemma: Sind linear unabhängig und linear abhängig, so lässt sich als Linearkombination von schreiben.
  • Ist eine Familie von Vektoren linear unabhängig, so ist jede Teilfamilie dieser Familie ebenfalls linear unabhängig. Ist eine Familie hingegen linear abhängig, so ist jede Familie, die diese abhängige Familie beinhaltet, ebenso linear abhängig.
  • Elementare Umformungen der Vektoren verändern die lineare Abhängigkeit oder die lineare Unabhängigkeit nicht.
  • Ist der Nullvektor einer der (hier: Sei ), so sind diese linear abhängig – der Nullvektor kann erzeugt werden, indem alle gesetzt werden mit Ausnahme von , welches als Koeffizient des Nullvektors beliebig (also insbesondere auch ungleich null) sein darf.
  • In einem -dimensionalen Raum ist eine Familie aus mehr als Vektoren immer linear abhängig (siehe Schranken-Lemma).

Ermittlung mittels Determinante

Hat man Vektoren eines -dimensionalen Vektorraums als Zeilen- oder Spaltenvektoren bzgl. einer festen Basis gegeben, so kann man deren lineare Unabhängigkeit dadurch prüfen, dass man diese Zeilen- bzw. Spaltenvektoren zu einer -Matrix zusammenfasst und dann deren Determinante ausrechnet. Die Vektoren sind genau dann linear unabhängig, wenn die Determinante von 0 verschieden ist.

Basis eines Vektorraums

Eine wichtige Rolle spielt das Konzept der linear unabhängigen Vektoren bei der Definition beziehungsweise beim Umgang mit Vektorraumbasen. Eine Basis eines Vektorraums ist ein linear unabhängiges Erzeugendensystem. Basen erlauben es, insbesondere bei endlichdimensionalen Vektorräumen mit Koordinaten zu rechnen.

Beispiele

Einzelner Vektor

Der Vektor sei ein Element des Vektorraums über . Dann ist der einzelne Vektor für sich genau dann linear unabhängig, wenn er nicht der Nullvektor ist.

Denn aus der Definition des Vektorraums folgt, dass wenn

mit ,

nur oder sein kann!

Vektoren in der Ebene

Die Vektoren und sind in linear unabhängig.

Beweis: Für gelte

d. h.


Dann gilt

also

Dieses Gleichungssystem ist nur für die Lösung , (die sogenannte triviale Lösung) erfüllt; d. h. und sind linear unabhängig.

Standardbasis im n-dimensionalen Raum

Im Vektorraum betrachte folgende Elemente (die natürliche oder Standardbasis von ):

Dann ist die Vektorfamilie mit linear unabhängig.

Beweis:    Für gelte

Dann gilt aber auch

und daraus folgt, dass für alle .

Funktionen als Vektoren

Sei der Vektorraum aller Funktionen . Die beiden Funktionen und in sind linear unabhängig.

Beweis: Es seien und es gelte

für alle . Leitet man diese Gleichung nach ab, dann erhält man eine zweite Gleichung

Indem man die erste von der zweiten Gleichung subtrahiert, erhält man

Da diese Gleichung für alle und damit insbesondere auch für gelten muss, folgt daraus durch Einsetzen von , dass sein muss. Setzt man das so berechnete wieder in die erste Gleichung ein, dann ergibt sich

Daraus folgt wieder, dass (für ) sein muss.

Da die erste Gleichung nur für und lösbar ist, sind die beiden Funktionen und linear unabhängig.


Reihen

Sei der Vektorraum aller reellwertigen stetigen Funktionen auf dem offenen Einheitsintervall. Dann gilt zwar

aber dennoch sind linear unabhängig. Linearkombinationen aus Potenzen von sind nämlich nur Polynome und keine allgemeinen Potenzreihen, insbesondere also in der Nähe von 1 beschränkt, so dass sich nicht als Linearkombination von Potenzen darstellen lässt.

Zeilen und Spalten einer Matrix

Interessant ist auch die Frage, ob die Zeilen einer Matrix linear unabhängig sind oder nicht. Dabei werden die Zeilen als Vektoren betrachtet. Falls die Zeilen einer quadratischen Matrix linear unabhängig sind, so nennt man die Matrix regulär, andernfalls singulär. Die Spalten einer quadratischen Matrix sind genau dann linear unabhängig, wenn die Zeilen linear unabhängig sind. Beispiel einer Folge von regulären Matrizen: Hilbert-Matrix.

Rationale Unabhängigkeit

Reelle Zahlen, die über den rationalen Zahlen als Koeffizienten linear unabhängig sind, nennt man rational unabhängig oder inkommensurabel. Die Zahlen sind demnach rational unabhängig oder inkommensurabel, die Zahlen dagegen rational abhängig.

Verallgemeinerungen

Die Definition linear unabhängiger Vektoren lässt sich analog auf Elemente eines Moduls anwenden. In diesem Zusammenhang werden linear unabhängige Familien auch frei genannt (siehe auch: freier Modul).

Der Begriff der linearen Unabhängigkeit lässt sich weiter zu einer Betrachtung von unabhängigen Mengen verallgemeinern, siehe dazu Matroid.

Literatur

Dieser Artikel basiert ursprünglich auf dem Artikel Lineare Unabhängigkeit aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.