Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Statistische Versuchsplanung
Die statistische Versuchsplanung , kurz SVP (englisch design of experiments, DoE) umfasst alle statistischen Verfahren, die vor Versuchsbeginn angewendet werden sollten. Dazu gehören:
- die Bestimmung des minimal erforderlichen Versuchsumfanges zur Einhaltung von Genauigkeitsvorgaben
- die optimale Allokation (vor allem in der Regressionsanalyse Modell I), für die sich der kleinste Umfang ergibt (D-, A-, G- optimale Versuchspläne)
- Konstruktion von Versuchsanlagen zur Ausschaltung von Störgrößen (Blockanlagen, lateinische Quadrate u. a.)
- faktorielle Pläne, vor allem fraktionierte faktorielle Pläne
- sequentielle Versuchsplanung und Auswertung (Sequentialanalyse); hier wechseln Datenerfassung und -auswertung ab, bis eine vorgegebene Genauigkeit erreicht wird
Da Versuche Ressourcen benötigen (Personal, Zeit, Geräte usw.), sieht sich der Versuchsverantwortliche in einem Zwiespalt zwischen einerseits der Genauigkeit und Zuverlässigkeit seiner erwarteten Ergebnisse und andererseits dem dazu notwendigen Aufwand. Der Begriff „Versuch“ schließt neben materiellen Versuchen die Rechnersimulationen mit ein. Mit der statistischen Versuchsplanung wird mit möglichst wenigen Versuchen (Einzelexperimenten) der Wirkzusammenhang zwischen Einflussfaktoren (= unabhängige Variablen) und Zielgrößen (= abhängige Variable) möglichst genau ermittelt. Wichtiger Bestandteil der statistischen Versuchsplanung ist die Bestimmung des Versuchsumfanges in Abhängigkeit von Genauigkeitsvorgaben wie etwa der Risiken von statistischen Tests und der minimal interessierenden Mindestdifferenz vom Nullhypothesenwert.
Geschichte
Der Grundstein der heutigen statistischen Versuchsplanung wurde in den 1920er Jahren von Ronald Aylmer Fisher und seinem Team am heutigen Agrarforschungsinstitut Rothamsted Research des Vereinigten Königreichs gelegt. Fisher führte für Versuche grundlegende Vorgehensweisen wie Wiederholungen, zufällige Reihenfolgen, Blockbildung und Vermengungen ein. Um die Versuchsergebnisse auszuwerten, entwickelte er die Varianzanalyse. Im Jahr 1935 wurde von ihm das erste Buch mit dem Titel The design of experiments zum Thema Versuchsplanung veröffentlicht, wodurch sich die Entwicklung beschleunigte. Die statistische Versuchsplanung wurde in der Zeit bis 1950 zunächst vorwiegend in der Landwirtschaft angewendet.[1]
Im Jahr 1951 wurden die bisherigen einfachen Versuchsplanungen von George E. P. Box und K. B. Wilson durch Lösungsansätze für Optimierungsaufgaben ergänzt. Es gab allerdings schon vorher Bestrebungen Versuche optimal zu planen, so führte Kristine Smith in ihrer Dissertation im Jahr 1918 das Kriterium der G-Optimalität ein.[2] Durch die Einführung von Optimierungsansätzen konnte sich das Anwendungsgebiet auf die Verfahrensoptimierung in der chemischen Industrie erweitern. Bis zu diesem Zeitpunkt war die Entwicklung der statistischen Versuchsplanung an den praktischen Anforderungen und Problemstellungen orientiert. J. Kiefer stellte 1959 als erster eine umfassende theoretische Darstellung für die Konstruktion und den Vergleich von Versuchsplänen vor.[1]
Zielsetzung und Nutzen
Die intuitiven Vorgehensweisen bei Versuchen, wie das Ändern eines Faktors nach dem anderen (one factor at a time) oder nach dem Prinzip Versuch und Irrtum (trial and error), bringen nur durch Zufall ein optimales Versuchsergebnis hervor. Die Einzelwirkungen und Wechselwirkungen von Einflussfaktoren werden dabei nicht erkannt.
Im Gegensatz dazu ist die statistische Versuchsplanung eine Methodik zur systematischen Planung und statistischen Auswertung von Versuchen. Es wird mit geringem Aufwand der funktionale Zusammenhang von Einflussparametern und den Ergebnissen ermittelt und mathematisch beschrieben. Die hierzu benötigten Ressourcen wie zum Beispiel Personal, Zeit und Kosten sind vor der Durchführung der Versuche bekannt und quantifizierbar.
Versuchspläne
24-Versuchsplan | ||||
23-Versuchsplan | ||||
22-Versuchsplan | ||||
Versuchs-Nr. | x1 | x2 | x3 | x4 |
1 | − | − | − | − |
2 | + | − | − | − |
3 | − | + | − | − |
4 | + | + | − | − |
5 | − | − | + | − |
6 | + | − | + | − |
7 | − | + | + | − |
8 | + | + | + | − |
9 | − | − | − | + |
10 | + | − | − | + |
11 | − | + | − | + |
12 | + | + | − | + |
13 | − | − | + | + |
14 | + | − | + | + |
15 | − | + | + | + |
16 | + | + | + | + |
Zu den Versuchsplänen gehören Anlagen zur Ausschaltung von Störgrößen wie Blockanlagen und Lateinische Quadrate, sequentielle Versuchspläne und faktorielle Anlagen.
Im Gegensatz zur „althergebrachten“ Vorgehensweise, bei der in einer Versuchsreihe nur ein Faktor variiert wird, werden in faktoriellen Anlagen mehrere Faktoren gleichzeitig verändert. Es werden sogenannte Versuchspläne erstellt, die Folgendes berücksichtigen:
- Anzahl der zu untersuchenden Faktoren (mind. 2)
- Art der zu untersuchenden Faktoren (nominal (= qualitativ) oder quantitativ)
- Bestehende Informationen
- Gewünschte Genauigkeit/Zuverlässigkeit der Aussagen
Klassische Pläne in der Versuchsplanung sind vollständige Versuchspläne, Teilfaktorpläne und Versuchspläne für Wirkungsflächen. Mit Screening-Plänen kann mit relativ wenigen Versuchen der Einfluss vieler Faktoren gleichzeitig untersucht werden, um zu erkennen, welche der Faktoren inferenzstatistisch signifikant sind, das heißt die Ausgangsvariablen verändern. Mit Wirkungsflächenplänen kann der Zusammenhang zwischen den wenigen wichtigen Faktoren und den Zielgrößen im Detail untersucht werden, um optimale Einstellungen der Faktoren zu ermitteln.
Software zur statistischen Versuchsplanung
Für das nicht-kommerzielle Statistikpaket R sind eine Reihe von Zusatzpaketen (das umfangreichste ist OPDOE) für die Versuchsplanung verfügbar[3]. Es gibt spezielle Software, die dem statistisch weniger versierten Benutzer die Durchführung der Planung und der Auswertung erleichtert, dies geschieht jedoch auf Kosten der Flexibilität. Geeignete Programme sind beispielsweise Design-Expert, Fusion QbD, GlobalOptimize, Modde und STAVEX; breitere Tools mit speziellen DoE-Modulen sind Cornerstone, JMP, Minitab, STATISTICA oder Visual-XSel.
Daneben enthalten verschiedenartige Simulationspakete oft speziell zugeschnittene Programme oder Module zur statistischen Versuchsplanung.
Beispiele
Literatur
Englischsprachige Standardwerke
- George E. P. Box, J. Stuart Hunter, William G. Hunter: Statistics for Experimenters. Design, Innovation, and Discovery. 2. Auflage. John Wiley & Sons, Hoboken NJ 2005, ISBN 0-471-71813-0 (Wiley Series in Probability and Statistics).
- Gertrude M. Cox, William G. Cochran: Experimental Designs. 2. Auflage. Wiley, New York NY 1992, ISBN 0-471-16203-5 (Wiley Publications in Statistics).
- Rasch D., Pilz, J., Gebhardt, A. and Verdooren, R.L., Optimal Experimental Design with R, Boca Raton, Chapman and Hall, 2011, ISBN 978-1-4398-1697-4 (Hardback)
- Angela Dean, Daniel Voss: Design and Analysis of Experiments. Springer New York, 1999, ISBN 978-0-387-98561-9 (Springer Texts in Statistics).
- Douglas C. Montgomery: Design and Analysis of Experiments. International Student Version. 7. Auflage. John Wiley & Sons, Hoboken NJ 2009, ISBN 978-0-470-39882-1.
- Raymond H. Myers, Douglas C. Montgomery, Christine M. Anderson-Cook: Response Surface Methodology. Process and Product Optimization Using Designed Experiments. 3. Auflage. John Wiley & Sons, Hoboken NJ 2009, ISBN 978-0-470-17446-3 (Wiley Series in Probability and Statistics).
Deutschsprachige Werke
- Hans Bandemer, Andreas Bellmann: Statistische Versuchsplanung. 4. neubearbeitete Auflage. Teubner Verlag, Stuttgart 1994, ISBN 3-8154-2079-2 (Mathematik für Ingenieure und Naturwissenschaftler).
- Theorie und Anwendung der optimalen Versuchsplanung. 1, Akademie-Verlag, Berlin 1977 (Mathematische Lehrbücher und Monographien. 2. Abteilung: Mathematische Monographien 47).
- Hans Bandemer, Wolfgang Näther: Theorie und Anwendung der optimalen Versuchsplanung. 2, Akademie-Verlag, Berlin 1980 (Mathematische Lehrbücher und Monographien. 2. Abteilung: Mathematische Monographien 48).
- Statistische Versuchsplanung und -auswertung in der Stoffwirtschaft. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1974.
- Dieter Rasch, G. Herrendörfer, J. Bock, N. Victor, V. Guiard: Verfahrensbibliothek Versuchsplanung und - auswertung, 2. verbesserte Auflage in einem Band mit CD, R. Oldenbourg Verlag München Wien 2008, ISBN 978-3-486-58330-4
- Bernd Klein: Versuchsplanung – DoE. Einführung in die Taguchi/Shainin-Methodik. 2. korrigierte und erweiterte Auflage. Oldenbourg, München 2007, ISBN 978-3-486-58352-6.
- Wilhelm Kleppmann: Versuchsplanung. Produkte und Prozesse optimieren. 8. überarbeitete Auflage. Carl Hanser Verlag, München 2013, ISBN 978-3-446-43752-4 (Praxisreihe Qualitätswissen).
- Volker Nollau: Statistische Analysen. Mathematische Methoden der Planung und Auswertung von Versuchen. 2. Auflage. Birkhäuser Verlag, Basel 1979, ISBN 3-7643-1019-7.
- Harro Petersen: Grundlagen der Statistik und der statistischen Versuchsplanung – Teil 2: Grundlagen der statistischen Versuchsplanung. 2, Landsberg/Lech 1991, ISBN 3-609-65340-X.
- Dieter Rasch, G. Herrendörfer, J. Bock, K. Busch: Verfahrensbibliothek. Versuchsplanung und Auswertung. Band 1–3 (1978–1981), Deutscher Landwirtschaftsverlag, Berlin.
- Dieter Rasch, Volker Guiard, Gerd Nürnberg: Statistische Versuchsplanung. Einführung in die Methoden und Anwendung des Dialogsystems CADEMO. G. Fischer Verlag, Stuttgart 1992, ISBN 3-437-40247-1.
- Dieter Rasch und Dieter Schott:Mathematische Statistik, Kap. 12 Versuchsanlagen. Wiley VCH, Weinheim 2016, ISBN 978-3-527-33884-9.
- Holger Wilker: Systemoptimierung in der Praxis – Teil 2: Leitfaden zur statistischen Versuchsauswertung. 1, Books on Demand, Norderstedt 2006, ISBN 3-8334-6306-6.
Einzelnachweise
- ↑ 1,0 1,1 Eberhard Scheffler: Einführung in die Praxis der statistischen Versuchsplanung. 2. Auflage. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1986, ISBN 3-342-00099-6, S. 11.
- ↑ Hans Bandemer, Andreas Bellmann, Wolfhart Jung, Klaus Richter: Optimale Versuchsplanung. Akademie-Verlag, Berlin 1973, S. 3.
- ↑ Ulrike Groemping: CRAN Task View: Design of Experiments (DoE) & Analysis of Experimental Data. Abgerufen am 9. Juni 2015.
Dieser Artikel basiert ursprünglich auf dem Artikel Statistische Versuchsplanung aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |