Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Option (Wirtschaft)

Aus Jewiki
(Weitergeleitet von Aktienoption)
Zur Navigation springen Zur Suche springen

Eine Option bezeichnet in der Wirtschaft ein Recht, eine bestimmte Sache zu einem späteren Zeitpunkt zu einem vereinbarten Preis zu kaufen oder zu verkaufen. Optionen werden auch als bedingte Termingeschäfte bezeichnet und gehören damit zur Gruppe der Derivate. Es handelt sich ausdrücklich um ein Recht und nicht um eine Pflicht: Der Optionsinhaber, der die Option zu einem bestimmten Preis (Prämie) vom Stillhalter (Optionsverkäufer) gekauft hat, entscheidet einseitig, ob er die Option gegen den Stillhalter ausübt oder sie verfallen lässt.

Übersicht

Die Standard-Optionen (auch englisch plain vanilla options genannt) sind Kaufoptionen (Calls) oder Verkaufsoptionen (Puts). Der Käufer hat das Recht – nicht jedoch die Pflicht – zu bestimmten Ausübungszeitpunkten eine bestimmte Menge des Bezugswerts zu einem zuvor festgelegten Ausübungspreis (oder englisch strike) zu kaufen oder zu verkaufen. Der Verkäufer der Option (auch Stillhalter, Schreiber, Zeichner) erhält den Kaufpreis der Option. Er ist im Falle der Ausübung verpflichtet, den Basiswert zum vorher bestimmten Preis zu verkaufen bzw. zu kaufen.

Man unterscheidet bei Optionen, wie bei allen Termingeschäften, zwei Arten der Ausübung: Zahlung und Lieferung (englisch physical delivery) und Barausgleich. Ist Zahlung und Lieferung vereinbart, liefert eine Vertragspartei (bei einem Put der Inhaber, bei einem Call der Stillhalter) den Basiswert, die andere Vertragspartei zahlt den Ausübungspreis als Kaufpreis. Beim Barausgleich zahlt der Stillhalter die Wertdifferenz, die sich aus Ausübungspreis und Marktpreis des Basiswertes am Ausübungstag ergibt, an den Optionsinhaber. Der umgekehrte Fall, in dem der Inhaber an den Stillhalter zahlt, kann im Normalfall nicht vorkommen, da der Inhaber in diesem Fall die Option nicht ausübt. Der wirtschaftliche Vorteil für den Inhaber ist in beiden Fällen gleich, wenn man von Transaktions-, Lagerungs- und Lieferkosten absieht.

Optionsarten

Neben den Standard-Optionen existieren noch die exotischen Optionen, deren Auszahlungsprofil nicht nur von der Differenz zwischen dem Kurs und dem Ausübungspreis abhängt.

Ausübungsarten

Je nach den Ausübungszeitpunkten unterscheidet man die

  • europäische Option: die Option kann nur am Fälligkeitsdatum ausgeübt werden;
  • amerikanische Option: die Option kann an jedem Handelstag vor der Fälligkeit ausgeübt werden;
  • Bermuda-Option: die Option kann zu einem von mehreren zuvor festgelegten Zeitpunkten ausgeübt werden.

Die Bezeichnung geht nach eigener Aussage auf den Nobelpreisträger Paul Samuelson zurück, siehe Interview mit Robert Merton, http://www.youtube.com/watch?v=RbIzwTGN3Yc (Minute 11:00).

Black-Scholes-Modell

Im Jahre 1973 veröffentlichten die amerikanischen Wissenschaftler Fischer Black und Myron Scholes fast gleichzeitig mit Robert C. Merton in zwei unabhängigen Artikeln Methoden zur exakten Bestimmung des „wahren“ Wertes einer Option. Scholes und Merton erhielten 1997 den Preis der Schwedischen Reichsbank für Ökonomische Wissenschaften in Erinnerung an Alfred Nobel, oftmals als Wirtschaftsnobelpreis bezeichnet, „für eine neue Methode zur Bestimmung des Wertes von Derivaten“, das Black-Scholes-Modell. Black konnte den Preis nicht mehr entgegennehmen, er starb im August 1995.

Handel

Eine Option kann als ein individueller Vertrag zwischen dem Optionsnehmer und dem Optionsgeber (Stillhalter) abgeschlossen werden. Sie ist als solcher frei gestaltbar. Solche direkt zwischen zwei Vertragsparteien abgeschlossenen Optionen nennt man gemeinhin OTC-Optionen.

Der größte Teil des weltweiten Handels mit Optionen besteht jedoch aus standardisierten Kontrakten, die an Terminbörsen wie der EUREX in Europa oder der CBOT in den USA gehandelt werden. Die Standardisierung soll die Liquidität der Optionen erhöhen.

Letztendlich können Optionen noch als Wertpapier gestaltet werden (Optionsschein).

Basiswerte

An den Finanzmärkten können Optionen auf folgende Basiswerte gehandelt werden:

Für den geregelten Handel mit Optionen ist es Voraussetzung, dass die Basiswerte an liquiden Märkten gehandelt werden, um jederzeit den Wert der Option ermitteln zu können. Im Prinzip ist es jedoch auch möglich, dass der Basiswert beliebig gewählt werden kann, solange es möglich ist, die in Abschnitt Sensitivitäten und Kennzahlen beschriebenen nötigen Variablen zu bestimmen. Diese Derivate werden hingegen nur von zugelassenen Händlern wie Investmentbanken oder Brokern over the counter im außerbörslichen Handel angeboten.

Begriffe

Im Geld

  • Im Geld (englisch in the money) ist eine Option, die einen inneren Wert besitzt
  • Eine Call-Option ist im Geld, wenn der Marktpreis des Basiswertes größer ist als der Ausübungspreis
  • Eine Put-Option ist im Geld, wenn der Marktpreis des Basiswertes kleiner ist als der Ausübungspreis

Aus dem Geld

  • Aus dem Geld (englisch out of the money) ist eine Option, die keinen inneren Wert besitzt
  • Eine Call-Option ist aus dem Geld, wenn der Marktpreis des Basiswertes kleiner als der Ausübungspreis ist
  • Eine Put-Option ist aus dem Geld, wenn der Marktpreis des Basiswertes größer als der Ausübungspreis ist

Am Geld

  • Eine Option ist am Geld (englisch at the money), wenn der Marktpreis des Basiswertes gleich oder nahezu gleich dem Ausübungspreis ist

Wird der Ausübungspreis dabei mit dem Kassakurs verglichen, so spricht man von at-the-money-spot. Wird der Ausübungspreis mit dem laufzeitgleichen Terminkurs verglichen, so spricht man von at-the-money-forward.

Siehe hierzu auch: Moneyness.

Sensitivitäten und Kennzahlen - die sog. „Griechen“

Delta

Sensitivitätskennzahl, die angibt, welchen Einfluss der Preis des Basiswertes auf den Wert der Option hat. Das Delta ist mathematisch die erste Ableitung des Optionspreises nach dem Preis des Basiswertes. So bedeutet ein Delta von 0,5, dass eine Veränderung des Basiswertes um 1 € (in linearer Näherung) eine Veränderung des Optionspreises von 50 Cent hervorruft. Das Delta ist insbesondere im Zusammenhang mit dem sog. Delta-Hedging wichtig.

Gamma

Das Gamma einer Option gibt an, wie stark sich deren Delta (in linearer Näherung) ändert, wenn sich der Kurs des Basiswerts um eine Einheit ändert und alle anderen Größen sich nicht verändern. Mathematisch ist das Gamma die zweite Ableitung des Optionspreises nach dem Preis des Basiswertes. Für den Inhaber der Option (also sowohl für Long Call als auch für Long Put) gilt immer, dass Gamma ≥ 0 ist. Die Kennzahl findet auch bei Absicherungsstrategien in Form des Gamma-Hedging Berücksichtigung.

Theta

Das Theta einer Option gibt an, wie stark sich der theoretische Wert einer Option ändert, wenn sich die Restlaufzeit um einen Tag verkürzt und alle anderen Größen konstant bleiben. Für den Inhaber der Option ist das Theta normalerweise negativ, eine kürzere Restlaufzeit bedeutet also immer einen geringeren theoretischen Wert.

Vega

Das Vega (manchmal auch Lambda oder Kappa [1], da Vega kein Buchstabe des griechischen Alphabets ist) einer Option gibt an, wie stark sich der Wert der Option ändert, wenn sich die Volatilität des Basiswerts um einen Prozentpunkt ändert und alle anderen Größen konstant bleiben.

Rho

Das Rho einer Option gibt an, wie stark sich der Wert der Option ändert, wenn sich der risikofreie Zinssatz am Markt um einen Prozentpunkt ändert. Für Call-Optionen ist Rho positiv, für Put-Optionen negativ.

Hebel

Der Hebel wird errechnet, indem man den aktuellen Kurs des Basiswerts durch den aktuellen Preis der Option dividiert. Bezieht sich die Option auf ein Vielfaches oder einen Bruchteil des Basiswerts, muss dieser Faktor in der Rechnung entsprechend berücksichtigt werden. Man spricht hierbei vom Bezugsverhältnis (Ratio).

Omega

Man erhält durch Multiplikation des Deltas mit dem aktuellen Hebel eine neue Hebelgröße, die sich in den Kurstabellen meist unter der Bezeichnung Omega oder „Hebel effektiv“ findet. Eine Option mit einem aktuellen Hebel von 10 und einem Delta von 50 % hat also „nur“ ein Omega von 5, der Schein steigt also etwa um 5 %, wenn die Basis um 1 % steigt. Auch hier ist jedoch wieder zu beachten, dass sowohl das Delta und das Omega und die meisten anderen Kennzahlen sich ständig ändern. Trotzdem bietet das Omega ein relativ gutes Bild von den Chancen der entsprechenden Option.

Bewertung

Einflussgrößen

Der Preis einer Option hängt zum einen von ihren Ausstattungsmerkmalen ab, hier

  • der aktuelle Preis des Basiswerts,
  • der Ausübungspreis,
  • die Restlaufzeit bis zum Ausübungsdatum,

zum anderen von dem zugrunde gelegten Modell für die zukünftige Entwicklung des Basiswertes und anderer Marktparameter. Unter dem Black-Scholes-Modell sind die weiteren Einflussgrößen

  • die Volatilität des Basiswerts,
  • der risikofreie, kurzfristige Zinssatz am Markt,
  • erwartete Dividendenzahlungen innerhalb der Lebenszeit.

Der aktuelle Preis des Basiswertes und der Ausübungspreis bestimmen den inneren Wert der Option. Der innere Wert ist die Differenz zwischen dem Ausübungspreis und dem Preis des Basiswertes. Im Falle einer Call-Option in Bezug auf einen Basiswert mit einem augenblicklichen Wert von 100 € und einem Ausübungspreis von 90 € ist der innere Wert 10 €. Im Falle einer Put-Option ist in dem beschriebenen Fall der innere Wert 0.

Insbesondere die Volatilität hat einen großen Einfluss auf den Wert der Option. Je stärker der Preis schwankt, umso höher ist die Wahrscheinlichkeit, dass sich der Wert des Basiswertes stark verändert und damit der innere Wert der Option steigt oder sinkt. In der Regel gilt, dass eine höhere Volatilität einen positiven Einfluss auf den Wert der Option hat. In extremen Grenzfällen kann es sich jedoch genau umgekehrt verhalten.

Die Restlaufzeit beeinflusst den Wert der Option ähnlich wie die Volatilität. Je mehr Zeit bis zum Ausübungsdatum vorhanden ist, umso höher ist die Wahrscheinlichkeit, dass sich der innere Wert der Option ändert. Ein Teil des Wertes der Option besteht aus diesem Zeitwert. Es ist theoretisch möglich, den Zeitwert zu berechnen, indem man zwei Optionen vergleicht, die sich nur durch ihre Laufzeit unterscheiden und ansonsten identisch sind. Dies setzt aber den unrealistischen Fall eines nahezu vollkommenen Kapitalmarkts voraus.

Der Anstieg des risikofreien Zinssatzes hat einen positiven Effekt auf den Wert von Kaufoptionen (Call-Option) und einen negativen Effekt auf den Wert von Verkaufsoptionen (Put-Option), weil nach den gängigen Bewertungsmethoden die Wahrscheinlichkeit eines Kurs- oder Wertanstiegs des Basisguts an den risikofreien Zinssatz gekoppelt ist. Das liegt daran, dass das Geld, das dank des Calls nicht in einen Basiswert investiert werden muss, zinsbringend angelegt werden kann. Je höher die Zinsen einer alternativen Geldanlage sind, desto attraktiver ist der Kauf eines Calls. Mit steigendem Zinsniveau steigt damit der über den Inneren Wert hinausgehende Wert der Option, der Zeitwert. Beim Put ist die Situation umgekehrt: Je höher das Zinsniveau, desto niedriger ist der Zeitwert des Puts, weil man theoretisch den Basiswert der Option besitzen müsste, um das Verkaufsrecht in Anspruch nehmen zu können.

Dividendenzahlungen im Falle von Optionen auf Aktien haben negativen Einfluss auf den Wert einer Kaufoption im Vergleich zur selben Aktie bei Dividendenlosigkeit, da während der Optionshaltedauer auf Dividenden verzichtet wird, die theoretisch durch Ausübung der Option vereinnahmt werden können. Umgekehrt haben sie im Vergleich zur selben dividendenlosen Aktie einen positiven Einfluss auf den Wert einer Verkaufsoption, weil während der Optionshaltedauer noch Dividenden vereinnahmt werden können, die bei sofortiger Ausübung dem Optionsinhaber zuständen. Im Falle von Optionen auf Währungen oder Rohstoffe wird der zugrunde liegende Zinssatz der Währung oder die „Convenience Yield“ anstelle von Dividenden verwendet.

Asymmetrischer Gewinn und Verlust

Im Falle einer für ihn nachteiligen Entwicklung im Preis des Basiswertes wird der Besitzer der Option sein Recht nicht ausüben und die Option verfallen lassen. Er verliert damit maximal den Optionspreis – realisiert also einen Totalverlust –, hat aber die Möglichkeit auf einen unbegrenzten Gewinn bei Kaufoptionen. Dies bedeutet, dass die möglichen Verluste des Verkäufers bei Kaufoptionen unbegrenzt sind. Allerdings könnte man diesen Verlust auch als „entgangenen Gewinn“ (gedeckter Short-Call) betrachten, es sei denn, der Verkäufer der Kaufoption ist nicht im Besitz der entsprechenden Basiswerte (muss also zur Erfüllung kaufen und dann liefern – ungedeckter Verkauf einer Kaufoption (ungedeckter Short-Call), wobei ungedeckt bedeutet, dass die Position nur aus einem Instrument besteht).

Die folgenden Grafiken verdeutlichen die asymmetrische Auszahlungsstruktur. Die dargestellten Optionen sind identisch in allen Einflussgrößen. Wichtig für das Verständnis ist, dass der Käufer einer Option eine long position eingeht und der Verkäufer einer Option eine Short-Position eingeht. In allen vier Fällen ist der Wert der Option 10 und der Ausübungspreis 100.

Auszahlungsstruktur einer Call Option abhängig vom Preis des Basiswertes am Laufzeitende

In der vorherigen Grafik ist zu sehen, dass der Käufer (long) des Calls einen maximalen Verlust von 10 hat, hingegen unbegrenzte Gewinnmöglichkeiten besitzt. Im Gegensatz dazu hat der Verkäufer (short) einen maximalen Gewinn von 10 mit unbegrenzten Verlusten.

Auszahlungsstruktur einer Put Option abhängig vom Preis des Basiswertes am Laufzeitende

Im Falle eines Puts hat der Käufer (long) ebenfalls einen maximalen Verlust von 10. Ein häufiger Fehler ist die Übertragung der unbegrenzten Gewinnmöglichkeit der Kaufoption auf die Verkaufsoption. Das Basisgut kann aber allenfalls den Kurswert null annehmen. Dadurch ist die maximale Gewinnmöglichkeit auf diesen Fall eines Kurses von null begrenzt. Genau wie beim Call hat der Verkäufer (short) einen maximalen Gewinn von 10 mit nunmehr nur begrenzten Verlusten, wenn der Kurs des Basiswerts null annimmt. Der Unterschied zwischen Call und Put liegt darin, wie sich die Auszahlung im Verhältnis zum Basiswert verändert, und in der Begrenzung des Maximalgewinns/-verlusts bei Verkaufsoptionen.

Berechnung des Optionspreises

In der Optionspreistheorie gibt es prinzipiell zwei Herangehensweisen zur Bestimmung des fairen Optionspreises:

  • Mit Hilfe von Abschätzungen ohne Annahmen über mögliche zukünftige Aktienkurse und deren Wahrscheinlichkeiten (Verteilungsfreie No-Arbitrage-Beziehungen, Siehe: Optionspreistheorie)
  • Durch mögliche Aktienkurse und risikoneutrale Wahrscheinlichkeiten. Hierzu zählen das Binomialmodell sowie das Black-Scholes-Modell

Prinzipiell ist es möglich, die stochastischen Prozesse, welche den Preis des Basiswertes bestimmen, auf unterschiedliche Weise zu modellieren. Man kann diese Prozesse analytisch zeitkontinuierlich mit Differentialgleichungen und analytisch zeitdiskret mit Binomialbäumen abbilden. Eine nichtanalytische Lösung ist durch Zukunftssimulationen möglich.

Das bekannteste analytisch zeitkontinuierliche Modell ist das Modell von Black und Scholes. Das bekannteste analytisch zeitdiskrete Modell ist das Cox-Ross-Rubinstein-Modell. Eine gängige Simulationsmethode ist die Monte-Carlo-Simulation.

Verteilungsfreie No-Arbitrage-Beziehungen

Eine Call-Option kann nicht mehr wert sein als der Basiswert. Angenommen, der Basiswert wird heute zu 80 € gehandelt und jemand bietet auf diesen Basiswert eine Option an, die 90 € kostet. Niemand würde diese Option kaufen wollen, weil der Basiswert selbst günstiger zu erwerben ist, der offensichtlich mehr wert ist als die Option. Da zum Beispiel eine Aktie als Basiswert keine Verpflichtungen beinhaltet, kann diese gekauft und deponiert werden. Bei Bedarf wird sie wieder hervorgeholt. Dies entspricht einer ewigen Option mit Ausübungskurs 80 €; eine wertvollere Option ist aber nicht denkbar, so dass die (Call-)Option nie wertvoller sein kann als der Basiswert.

Eine Put-Option kann nicht mehr wert sein als der Barwert des Ausübungspreises. Niemand würde für das Recht, etwas für 80 € verkaufen zu dürfen, mehr als 80 € ausgeben. Finanzmathematisch korrekt müssen diese 80 € auf den heutigen Barwert abgezinst werden.

Diese Wertgrenzen sind der Ausgangspunkt zur Bestimmung des Wertes einer europäischen Option, die Put-Call-Parität.

Put-Call-Parität

Die Put-Call-Parität ist eine Beziehung zwischen dem Preis eines europäischen Calls und dem Preis eines europäischen Puts, wenn beide den gleichen Basispreis und das gleiche Fälligkeitsdatum haben:

wobei

  • p: Preis der europäischen Verkaufsoption
  • : Aktienkurs
  • c: Preis der europäischen Kaufoption
  • K: Basispreis der Kauf- und Verkaufsoption
  • r: risikoloser Zinssatz
  • T: Anzahl der Jahre
  • D: Diskontierte Dividendenzahlungen während der Laufzeit der Optionen

Würde die Put-Call-Parität verletzt, so wären risikolose Arbitragegewinne möglich.

Mittels der Put-Call-Parität lässt sich die Äquivalenz zwischen Optionsstrategien und einfachen Optionspositionen zeigen.

  • Covered Call entspricht Put short, an diesem Beispiel Beziehung demonstriert: , d. h. Aktie long und Call short (Covered Call) ist gleich einem Put short zuzüglich eines Geldbetrages.
  • Gegenposition (Reverse Hedge) von Covered Call entspricht Put long
  • Protective Put entspricht Call long
  • Gegenposition zum Protective Put ist der Call short

Black-Scholes

Die Black-Scholes-Formeln für den Wert europäischer Calls und Puts auf Basiswerte ohne Dividendenzahlungen sind

wobei

In dieser Formel ist S der heutige Preis des Basiswertes, X der Ausübungspreis, r der risikolose Zinssatz, T die Lebenszeit der Option in Jahren, σ die Volatilität von S und die kumulative Wahrscheinlichkeit, dass eine Variable mit einer Standardnormalverteilung kleiner als x ist.

Wenn der Basiswert keine Dividenden ausschüttet, ist der Preis einer amerikanischen Call-Option gleich dem Preis einer europäischen Call-Option. Die Formel für c gibt somit auch den Wert einer amerikanischen Call-Option mit denselben Kennzahlen unter der Annahme, dass der Basiswert keine Dividenden zahlt. Es existiert keine analytische Lösung für den Wert einer amerikanischen Put-Option.

Berücksichtigung von Zinsen

Der Gewinn bzw. Verlust von Optionen lässt sich unter Berücksichtigung von Zinsen bestimmen als:

wobei linear ist, da hier der Geldmarktzinssatz verwendet wird.

Verwässerungsschutz

Bei den Bewertungsmethoden wird implizit angenommen, dass das Optionsrecht nicht durch Kapitalmaßnahmen der Aktiengesellschaft an Wert verlieren (verwässern) kann. Dies wird durch den sog. Verwässerungsschutz beim Optionshandel gewährleistet.

Optimale Ausübung

Amerikanische Optionen lassen sich zu mehreren Zeitpunkten ausüben. Das Ausübungsverhalten wird beeinflusst von den Faktoren Zinsen auf Basispreis, einen Flexibilitätseffekt und der Dividende. Zu differenzieren ist nach Calls und Puts.

Ein positiver Effekt bedeutet, dass ausgeübt werden soll, ein negativer Effekt, dass es lohnender ist abzuwarten.

Bei Zinsen auf den Basispreis ist der Effekt auf Calls negativ, auf Puts dagegen positiv. Der Flexibilitätseffekt wirkt sowohl negativ auf Calls wie auch auf Puts. Das Dividendenereignis hat einen positiven Effekt auf Calls, jedoch einen negativen auf Puts.

Dividenden

  • Wird keine Dividende gezahlt, so ist die Ausübung eines Calls am Ende der Laufzeit immer optimal.
  • Bei Dividendenzahlung ist das Abwarten bis zum Endtermin für Puts weiterhin optimal.

Kritik an den Standardbewertungsmethoden

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.

Üblicherweise basieren die Bewertungsmethoden auf den Annahmen, dass die Wertänderungen normalverteilt („Glockenkurve“) sowie voneinander unabhängig sind. Nach Benoît Mandelbrot sind alle darauf aufbauenden Modelle und Bewertungsformeln (zum Beispiel die obige von Black-Scholes) falsch.[2] Seine Untersuchungen ergaben, dass die Kursänderungen exponentiell verteilt und voneinander abhängig sind und damit zu wesentlich heftigeren Preisausschlägen führen, als die Standardmodelle vorsehen.

Literatur

Einzelnachweise

  1. Igor Uszczpowski, Optionen und Futures verstehen, 6. Auflage, Beck-Wirtschaftsberater im dtv, ISBN 978-3-423-05808-7
  2. Benoît Mandelbrot: The Variations of certain speculative prices. In: Journal of Business 36, 1963, S. 394-419
Dieser Artikel basiert ursprünglich auf dem Artikel Option (Wirtschaft) aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.