Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Coulombsches Gesetz
Das coulombsche Gesetz oder Coulomb-Gesetz ist die Basis der Elektrostatik. Es beschreibt die Kraft zwischen zwei Punktladungen oder kugelsymmetrisch verteilten elektrischen Ladungen. Der Betrag dieser Kraft ist proportional zum Produkt der beiden Ladungsmengen und umgekehrt proportional zum Quadrat des Abstandes der Kugelmittelpunkte. Die Kraft wirkt je nach Vorzeichen der Ladungen anziehend oder abstoßend in Richtung der Verbindungsgeraden der Mittelpunkte. Im anziehenden Fall verhält sie sich also ganz entsprechend wie die Kraft zwischen zwei Punktmassen nach dem Gravitationsgesetz.
Bei mehr als zwei Ladungen werden die einzelnen Kraftvektoren gemäß dem Superpositionsprinzip addiert.
Das coulombsche Gesetz ist Grundlage der Influenz.
Coulomb-Kraft
Das coulombsche Gesetz wurde von Charles Augustin de Coulomb um 1785 entdeckt und in umfangreichen Experimenten bestätigt. Im Internationalen Einheitensystem, in skalarer Form und im Vakuum ist die Kraft demnach
- ,
, | kugelsymmetrisch verteilte Ladungsmengen |
Abstand zwischen den Mittelpunkten der Ladungsmengen | |
elektrische Feldkonstante |
Vektorform
Die allgemeine vektorielle Notation diskreter Ladungen in beliebiger Materie () liefert das Coulomb-Kraftfeld, dem eine Probeladung im Feld einer zweiten Ladung ausgesetzt ist, wie folgt:
(sprich: Die Kraft auf die Probeladung , hervorgerufen von der Ladung ; und: der Vektor vom Punkt der Ladung ausgehend zum Punkt der Probeladung )
Hierbei sind der Einheitsvektor, der von (entlang der Verbindungslinie beider Ladungsmittelpunkte) in Richtung zeigt; sowie und die Ortsvektoren der beiden Ladungsmittelpunkte. Wie zu sehen, müssen sich gleichnamige Ladungen, d.h. solche gleichen Vorzeichens dabei obiger Festlegung gemäß abstoßen, da die Kraft in solchem Fall dieselbe Orientierung wie besitzt, während sich Ladungen mit ungleichem Vorzeichen (ungleichnamige Ladungen) anziehen, da die Kraft dann (analog zum newtonschen Gravitationsgesetz) die entgegengesetzte Orientierung von besitzt.
Wird der Koordinatenursprung an die Position der Ladung gelegt, vereinfacht sich die obige Gleichung zu:
- .
Weiter ist dann
der Vektor der Feldstärke des von der Zentralladung erzeugten elektrischen Feldes an der Stelle , d.h. im Abstand vom Ursprung.
Wird die das Feld erzeugende Zentralladung durch eine im Raum verteilte Ladungswolke mit der Ladungsverteilung ersetzt, tritt an die Stelle der eingangs gegebenen Formel für die Coulomb-Kraft auf die Probeladung das Integral
- .
Das coulombsche Gesetz in der eingangs gegebenen Form ist dabei als Spezialfall für eine punktförmige Ladungsverteilung in dieser Formel enthalten. Umgekehrt kann mittels Superpositionsprinzip auch diese allgemeinere Form aus dem coulombschen Gesetz abgeleitet werden.
Der in den obigen Gleichungen auftretende Term
wird auch als Coulomb-Konstante bezeichnet.
Im Vakuum () gilt:
Dabei ist die Lichtgeschwindigkeit.
Im gaußschen und elektrostatischen CGS-Einheitensystem wird das coulombsche Gesetz zur Definition der elektrischen Ladung benutzt. Eine Ladungseinheit wirkt auf eine zweite im Abstand 1 cm mit der Kraft 1 dyn. Die elektrische Basiseinheit der Einheitensysteme SI, CGS-ESU und CGS-EMU unterscheidet sich prinzipiell nur durch die Festlegung von
- Im CGS-ESU ist . Daher hat die Coulomb-Konstante in diesem Einheitensystem den Wert .
- Im CGS-EMU ist . Daher hat in diesem Einheitensystem die Coulomb-Konstante den Wert .
Coulomb-Potential
Das elektrische Feld ist, solange keine zeitliche Änderung des magnetischen Felds auftritt, wirbelfrei und die Energiedifferenz beim Transfer einer Ladung von A nach B daher in diesem Fall unabhängig vom konkret zurückgelegten Weg. Entsprechend kann man das elektrische Feld und die elektrische Kraft auch durch ein Potential beschreiben.
Für den Fall der einfachen Coulomb-Kraft ergibt sich das Coulomb-Potential, das für eine einzelne Punktladung Q wie folgt beschrieben werden kann:
Dabei wird die Integrationskonstante C typischerweise null, so dass das Potential im Unendlichen verschwindet. Die Potentialdifferenz zwischen zwei Punkten ist der Spannungsabfall U zwischen diesen beiden Punkten. Das Coulomb-Potential gilt exakt nur für ruhende Ladungen. Für bewegte Punktladungen dagegen, bei denen auch Magnetfelder ins Spiel kommen, wird aus dem Coulomb-Potential ein Liénard-Wiechert-Potential.
Die potentielle elektrische Energie ist ebenfalls ein Potential, nun bezüglich der elektrischen Kraft:
Auch hier ist es üblich, die Randbedingung so zu wählen, dass die potentielle Energie im Unendlichen Null wird, C also auch hier gleich null ist.
Coulomb-Kraft in einem Medium
Das coulombsche Gesetz lässt sich auf einfache Weise auf den Fall von Ladungen in homogenen, isotropen, linearen Medien erweitern. Das die Ladungen umgebende Material muss dazu in guter Näherung diese Eigenschaften besitzen:
- Es ist elektrisch neutral.
- Es füllt den Raum zwischen den Ladungen und um diese herum gleichmäßig (homogen) aus.
- Die Polarisierbarkeit des Mediums ist richtungsunabhängig.
- Die Polarisierung ist proportional zum elektrischen Feld, das von den Ladungen erzeugt wird.
Insbesondere verlangt die Homogenität, dass der atomare Charakter der Materie im Vergleich zum Abstand der Ladungen vernachlässigbar ist.
Für solche Medien schreibt sich das coulombsche Gesetz in gleicher Form wie im Vakuum, mit dem einzigen Unterschied, dass durch ersetzt wird:
Die relative Permittivität ist bei isotropen Medien eine Materialkonstante, die der Polarisierbarkeit des Mediums Rechnung trägt. Sie kann sowohl durch Messungen als auch aus theoretischen Überlegungen gewonnen werden.
In der Umkehrung gilt im Vakuum .
Literatur
- Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006, ISBN 3-540-25421-8.
Dieser Artikel basiert ursprünglich auf dem Artikel Coulombsches Gesetz aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |