Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Datei:Inclinedthrow.gif

Aus Jewiki
Zur Navigation springen Zur Suche springen

Inclinedthrow.gif(400 × 288 Pixel, Dateigröße: 374 KB, MIME-Typ: image/gif, Endlosschleife, 102 Bilder, 10 s)

Diese Datei stammt aus einem gemeinsam genutzten Medienarchiv und kann von anderen Projekten verwendet werden. Die Beschreibung von deren Dateibeschreibungsseite wird unten angezeigt.

Beschreibung

Beschreibung
English: Trajectories of three objects thrown at the same angle (70°). The black object doesn't experience any form of drag and moves along a parabola. The blue object experiences Stokes' drag, and the green object Newton drag.
Datum
Quelle Eigenes Werk
Urheber AllenMcC.
Andere Versionen Inclinedthrow2.gif
GIF‑Erstellung
InfoField
 
Dieser Plot wurde mit Matplotlib erstellt.
Quelltext
InfoField

Python code

#!/usr/bin/python3
# -*- coding: utf8 -*-

import os
import inspect
from math import *
import numpy as np
from scipy.integrate import odeint
from scipy.optimize import newton
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import animation

# settings
mpl.rcParams['path.snap'] = False
fname = 'inclinedthrow'
size = 400, 288
l, w, b, h = 22.5/size[0], 1-23/size[0], 22.5/size[1], 1-23/size[1]
nframes = 102
delay = 8
lw = 1.
ms = 6
c1, c2, c3 = "#000000", "#0000ff", "#007100"

def projectile_motion(g, mu, pot, xy0, vxy0, tt):
    # use a four-dimensional vector function vec = [x, y, vx, vy]
    def dif(vec, t):
        # time derivative of the whole vector vec
        v = hypot(vec[2], vec[3])
        vxrel, vyrel = vec[2] / v, vec[3] / v
        return [vec[2], vec[3], -mu * v**pot * vxrel, -g - mu * v**pot * vyrel]

    # solve the differential equation numerically
    vec = odeint(dif, [xy0[0], xy0[1], vxy0[0], vxy0[1]], tt)
    return vec[:, 0], vec[:, 1], vec[:, 2], vec[:, 3]  # return x, y, vx, vy

g = 1.
theta  = radians(70)
v0 = sqrt(g/sin(2*theta))
vinf = 2.1
# use identical terminal velocity vinf for both types of friction
mu_stokes = g / vinf**1
mu_newton = g / vinf**2
x0, y0 = 0.0, 0.0
vx0, vy0 = v0 * cos(theta), v0 * sin(theta)

T = newton(lambda t: projectile_motion(g, 0, 0, (x0, y0), (vx0, vy0), [0, t])[1][1], 2*vy0/g)
nsub = 10
tt = np.linspace(0, T * nframes / (nframes - 1), (nframes - 1) * nsub + 1)

traj_free = projectile_motion(g, 0, 0, (x0, y0), (vx0, vy0), tt)
traj_stokes = projectile_motion(g, mu_stokes, 1, (x0, y0), (vx0, vy0), tt)
traj_newton = projectile_motion(g, mu_newton, 2, (x0, y0), (vx0, vy0), tt)

def animate(nframe, saveframes=False):
    print(nframe, '/', nframes)
    t = T * float(nframe) / nframes
    
    plt.clf()
    fig.gca().set_position((l, b, w, h))
    fig.gca().set_aspect("equal")
    plt.xlim(0, 1)
    plt.ylim(0, (h*size[1]) / (w*size[0]))
    plt.xticks([]), plt.yticks([])
    plt.xlabel('Distance', size=12)
    plt.ylabel('Height', size=12)
    
    plt.plot(traj_free[0][:nframe*nsub+1], traj_free[1][:nframe*nsub+1],
        '-', lw=lw, color=c1)
    plt.plot(traj_free[0][nframe*nsub], traj_free[1][nframe*nsub],
        'ok', color=c1, markersize=ms, markeredgewidth=0)
    
    plt.plot(traj_stokes[0][:nframe*nsub+1], traj_stokes[1][:nframe*nsub+1],
        '-', lw=lw, color=c2)
    plt.plot(traj_stokes[0][nframe*nsub], traj_stokes[1][nframe*nsub],
        'ok', color=c2, markersize=ms, markeredgewidth=0)
    
    plt.plot(traj_newton[0][:nframe*nsub+1], traj_newton[1][:nframe*nsub+1],
        '-', lw=lw, color=c3)
    plt.plot(traj_newton[0][nframe*nsub], traj_newton[1][nframe*nsub],
        'ok', color=c3, markersize=ms, markeredgewidth=0)
    
    if saveframes:
        # export frame
        dig = int(ceil(log10(nframes)))
        fsavename = ('frame{:0' + str(dig) + '}.svg').format(nframe)
        fig.savefig(fsavename)
        with open(fsavename) as f: content = f.read()
        content = content.replace('pt"', 'px"').replace('pt"', 'px"')
        with open(fsavename, 'w') as f: f.write(content)

fig = plt.figure(figsize=(size[0]/72., size[1]/72.))

os.chdir(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))))
for i in range(nframes):
    animate(i, True)
os.system('convert -loop 0 -delay ' + str(delay) + ' frame*.svg +dither ' + fname + '.gif')
# keep last frame for two seconds
os.system('gifsicle -k32 --color-method blend-diversity -b ' + fname + '.gif -d' + str(delay) + ' "#0-' + str(nframes-2) + '" -d200 "#' + str(nframes-1) + '"')
for i in os.listdir('.'):
    if i.startswith('frame') and i.endswith('.svg'):
        os.remove(i)

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
w:de:Creative Commons
Namensnennung Weitergabe unter gleichen Bedingungen
Dieses Werk darf von dir
  • verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
  • neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
  • Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
  • Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell17:10, 21. Okt. 2020Vorschaubild der Version vom 17:10, 21. Okt. 2020400 × 288 (374 KB)commonswikimedia>Geek3adjusted friction coefficients such to make terminal velocity of both trajectories equal. In this case, the Newton projectile moves further.

Die folgenden 3 Seiten verwenden diese Datei: