Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Edelmetalle
H | He | |||||||||||||||||
Li | Be | B | C | N | O | F | Ne | |||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | |||||||
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
Edelmetalle sind Metalle, die besonders korrosionsbeständig sind. Einige Edelmetalle, zum Beispiel Gold und Silber, sind deswegen seit dem Altertum zur Herstellung von Schmuck und Münzen in Gebrauch. Im Laufe der letzten vier Jahrhunderte wurden die Platinmetalle entdeckt, die eine ähnliche Korrosionsbeständigkeit wie Gold zeigen.
Edelmetalle im klassischen Sinn
Zu den Edelmetallen im klassischen Sinn gehören die Platinmetalle sowie Gold und Silber. Teilweise wird auch noch Quecksilber zu den Edelmetallen gezählt, obwohl es in vieler Hinsicht reaktiver als die übrigen Edelmetalle ist. Edelmetalle korrodieren (verrosten, oxidieren) bei Raumtemperatur an Luft entweder gar nicht, oder nur äußerst langsam und in sehr geringem Umfang, so wie es beim Silber der Fall ist, wenn es mit (Spuren von) Schwefelwasserstoff in Berührung kommt. Selbst dabei bildet sich nur eine extrem dünne Schicht von schwarzem Silbersulfid. Der Silbergegenstand wird dabei nicht beschädigt. Von Salzsäure werden die Edelmetalle nicht angegriffen. Edelmetalle zeichnen sich ferner dadurch aus, dass viele ihrer Verbindungen thermisch nicht stabil sind. So werden Silberoxid und Quecksilberoxid beim Erhitzen in ihre Einzelelemente zerlegt.
Halbedelmetalle
Im 19. und 20. Jahrhundert wurde die Theorie der Redoxreaktionen verfeinert. Neue Reaktionswege wurden entdeckt. Des Weiteren entwickelte man die elektrochemische Methode der Potentiometrie, mit der man die Stärke von Reduktionsmitteln und Oxidationsmitteln genau messen und vergleichen konnte. Dies gestattete auch eine verfeinerte Einteilung der Metalle nach ihrem edlen oder unedlen Charakter. Zu den Halbedelmetallen gehören demnach solche, die nicht unter Wasserstoffbildung mit wässrigen Lösungen nichtoxidierender Säuren wie zum Beispiel Salzsäure oder verdünnte Schwefelsäure reagieren. Das liegt an ihrem Standardpotential, welches höher als dasjenige des Wasserstoffs ist. Diese Metalle sind auch gegen Luftsauerstoff weitgehend inert. Aus diesem Grund kommen sie in der Natur gelegentlich gediegen vor.
Metalle wie Bismut und Kupfer liegen mit ihrem Standardpotential deutlich näher am Wasserstoff als die klassischen Edelmetalle. An Luft korrodieren sie schneller, und in oxidierenden Säuren wie konzentrierte Schwefelsäure oder halbkonzentrierte (30-prozentige) Salpetersäure lösen sie sich zügig. Im chemischen Sinne sind Halbedelmetalle also alle Metalle, die in der elektrochemischen Spannungsreihe ein positives Standardpotential gegenüber Wasserstoff besitzen, ansonsten aber nicht so korrosionsbeständig wie klassische Edelmetalle sind. Nach dieser Definition ist auch das künstliche und radioaktive Technetium als halbedel zu bezeichnen. Diese Halbedelmetalle nehmen also eine Zwischenstellung zwischen den klassischen edlen und unedlen Metallen ein. Selbst Nickel und Zinn werden von einigen Autoren dazugezählt, obwohl ihr Standardpotential etwas unter dem Wasserstoff liegt.
Kurzlebige radioaktive Edelmetalle
Theoretische Überlegungen aufgrund quantenmechanischer Berechnungen sprechen dafür, dass auch die künstlichen Elemente Bohrium, Hassium, Meitnerium, Darmstadtium, Roentgenium und Copernicium Edelmetalle sind. Praktische Bedeutung kommt diesen Metallen allerdings nicht zu, da ihre bekannten Isotope äußerst instabil sind und schnell (typischerweise in wenigen Sekunden, maximal in circa 1 Stunde für Mt-278) radioaktiv zerfallen.
Unedle Metalle
Klar abzugrenzen sind die unedlen Metalle wie Aluminium, Eisen und Blei. Da ihr Standardpotential kleiner als das von Wasserstoff ist, werden sie von nichtoxidierenden Säuren angegriffen. Das kann, wie beim Blei, auch recht langsam erfolgen. Nichtoxidierend bedeutet hierbei, dass sich kein stärkeres Oxidationsmittel als das Wasserstoffion in der Lösung befindet.
Weitere korrosionsbeständige Metalle
Neben den Edelmetallen gibt es auch noch einige Metalle, die infolge ihrer Passivierung mitunter eine hohe Korrosionsbeständigkeit besitzen, die je nach chemischem Milieu auch manche Edelmetalle zum Teil übertrifft. Dies sind die Elemente der 4. Nebengruppe (Titan, Zirconium und Hafnium), die der 5. Nebengruppe (Vanadium, Niob und Tantal) sowie die der 6. Nebengruppe (Chrom, Molybdän und Wolfram). Weitere technisch bedeutende Metalle, die Passivschichten bilden, sind Zink (12. Nebengruppe), Aluminium (3. Hauptgruppe) sowie Silicium und Blei (4. Hauptgruppe).
Reaktionen der Edelmetalle
Mit geeigneten aggressiven Chemikalien kann man alle Edelmetalle in Lösung bringen. Gold und einige Platinmetalle lösen sich zügig in Königswasser. Silber sowie die Halbedelmetalle reagieren lebhaft mit Salpetersäure. Im Bergbau werden Cyanidlösungen in Verbindung mit Luftsauerstoff verwendet, um Gold und Silber aus Gesteinen zu lösen. Der Angriff durch den Luftsauerstoff ist nur möglich, weil sich als Produkte stabile Cyanidokomplexe mit Gold und Silber bilden. Auch im Königswasser ist die Bildung stabiler Komplexverbindungen (Chloridokomplexe) mitentscheidend für die oxidierende Wirkung des Milieus. Edelmetalle verhalten sich im Übrigen häufig gar nicht „edel“ gegenüber sehr elektropositiven Metallen, sondern bilden hier häufig bereitwillig und unter Energiefreisetzung Intermetallische Phasen.
Physikalische Auffassung vom Edelmetallcharakter
Im physikalischen Sinn ist die Menge der Edelmetalle noch bedeutend kleiner; es sind nur Kupfer, Silber und Gold. Das Kriterium zur Klassifizierung ist die elektronische Bandstruktur. Die drei aufgeführten Metalle besitzen alle vollständig gefüllte d-Bänder, die damit nicht zur Leitfähigkeit und praktisch nicht zur Reaktivität beitragen. Für Platin gilt dies z. B. nicht. Zwei d-artige Bänder kreuzen das Ferminiveau. Das führt zu einem anderen chemischen Verhalten, weshalb Platin, im Gegensatz zu Gold, auch gern als Katalysator benutzt wird. Besonders auffällig ist der Unterschied bei der Herstellung reiner Metalloberflächen im Ultrahochvakuum. Während z. B. Gold vergleichsweise leicht zu präparieren ist und nach der Präparation lange rein bleibt, bindet sich an Platin oder auch Palladium sehr schnell Kohlenstoffmonoxid.
Chemisches Verständnis von Edelmetallen
Wie schon bei den unedlen Metallen angedeutet, sind Edelmetalle und Halbedelmetalle einfach metallische Elemente (und eventuell gewisse Legierungen, wie z.B. Edelstähle), deren Normalpotential positiv gegenüber der Wasserstoffelektrode ist, die also von verdünnten Säuren nicht angegriffen werden. Die Elemente, die in Betracht kommen, sind somit sortiert nach ihrem Normalpotential gegenüber der H-Elektrode in wässriger Lösung bei pH 7:
Name | Gruppe | Reaktion | Potential |
---|---|---|---|
Gold | Ib/6 | Au → Au3+ | 1,498 V |
Platin | VIIIb/6 | Pt → Pt2+ | 1,18 V |
Iridium | VIIIb/6 | Ir → Ir3+ | 1,156 V |
Palladium | VIIIb/5 | Pd → Pd2+ | 0,987 V |
Osmium | VIIIb/6 | Os → Os2+ | 0,85 V |
Silber | Ib/5 | Ag → Ag+ | 0,799 V |
Quecksilber | IIb/6 | 2 Hg → Hg22+ | 0,7973 V |
Polonium | VIa/6 | Po → Po2+ | 0,65 V[1] |
Rhodium | VIIIb/5 | Rh → Rh2+ | 0,60 V |
Ruthenium | VIIIb/5 | Ru → Ru2+ | 0,45 V |
Kupfer | Ib/4 | Cu → Cu2+ | 0,337 V |
Bismut | Va/6 | Bi → Bi3+ | 0,32 V |
Technetium | VIIb/5 | Tc → Tc4+ | 0,272 V |
Rhenium | VIIb/6 | Re → Re4+ | 0,259 V |
Antimon | Va/5 | Sb → Sb3+ | 0,152 V |
Antimon zählt als Halbmetall nicht dazu, und bei Polonium ist es wahrscheinlich seine starke Radioaktivität und makroskopische Unverfügbarkeit (vor dem Bau von Kernreaktoren), wegen der man es klassisch nicht als Edelmetall angesehen hatte – heutzutage ist es aber in Gramm-Mengen verfügbar. Die Unterteilung, sprich Potentialgrenze, dieser Elemente in Edelmetalle und Halbedelmetalle ist ziemlich willkürlich und wird nicht einheitlich gehandhabt. Sie wird aber meistens zwischen Kupfer und Ruthenium gezogen [2], da letztere prinzipiell durch feuchte Luft aufgrund der Redoxreaktion O2 + 2 H2O + 4 e− ⇄ 4 OH−(aq) mit einem Normalpotential von +0.4 V angegriffen werden können.
Umgangssprachlicher Gebrauch
Im Sprachgebrauch von Sportreportagen, vor allem über Medaillen während der Olympischen Spiele, wird fälschlicherweise auch die Bronze zu den Edelmetallen gezählt.
Siehe auch
Weblinks
- Welche Bänder das Fermi-Niveau kreuzen, kann man sich auf der Seite The Fermi Surface Database anschauen.
Referenzen
Dieser Artikel basiert ursprünglich auf dem Artikel Edelmetalle aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |