Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Ergodizität

Aus Jewiki
Zur Navigation springen Zur Suche springen

Ergodizität (griechisch έργον: Werk und όδος: Weg) ist eine Eigenschaft dynamischer Systeme. Der Begriff geht auf den Physiker Ludwig Boltzmann zurück, der diese Eigenschaft im Zusammenhang mit der statistischen Theorie der Wärme untersuchte. Ergodizität wird in der Mathematik in der Ergodentheorie untersucht.

Allgemeines

Die Ergodizität bezieht sich auf das mittlere Verhalten eines Systems. Ein solches System wird durch eine Musterfunktion beschrieben, die die zeitliche Entwicklung des Systems abhängig von seinem aktuellen Zustand bestimmt. Man kann nun auf zweierlei Arten mitteln:

  1. man kann die Entwicklung über einen langen Zeitraum verfolgen und über diese Zeit mitteln, also den Zeitmittelwert bilden, oder
  2. man kann alle möglichen Zustände betrachten und über diese mitteln, also das Scharmittel (Ensemble-Mittel) bilden.

Streng ergodisch wird ein System dann genannt, wenn die Zeitmittel und Scharmittel mit der Wahrscheinlichkeit eins zum gleichen Ergebnis führen. Anschaulich bedeutet das, dass während der Entwicklung des Systems alle möglichen Zustände erreicht werden, der Zustandsraum also mit der Zeit vollständig ausgefüllt wird. Das bedeutet insbesondere, dass bei solchen Systemen der Erwartungswert nicht vom Anfangszustand abhängig ist.[1]

Als schwach ergodisch wird ein System bezeichnet, wenn in beiden Fällen nur der Erwartungswert und die Varianz übereinstimmen und Momente höherer Ordnung vernachlässigt werden.

Der exakte mathematische Nachweis der Ergodizität, insbesondere der Nachweis der strengen Ergodizität, lässt sich nur in Sonderfällen erbringen. In der Praxis wird der Nachweis der schwachen Ergodizität an einer oder einigen wenigen Musterfunktionen vorgenommen.

Beispiele

Ein einfaches physikalisches Beispiel für ein ergodisches System ist ein Teilchen, das sich regellos in einem abgeschlossenen Behälter bewegt (Brownsche Bewegung). Den Zustand dieses Teilchens kann man dann vereinfacht durch seine Position im dreidimensionalen Raum beschreiben, der durch den Behälter begrenzt wird. Dieser Raum ist dann auch der Zustandsraum, und die Bewegung in diesem Raum kann durch eine zufällige Funktion (genauer: einen Wiener-Prozess) beschrieben werden. Verfolgt man nun die Bahnkurve des Teilchens, wird dieses nach genügend langer Zeit jeden Punkt des Behälters passiert haben (genauer: jedem Punkt beliebig nahe gekommen sein). Daher ist es egal, ob man eine Mittelung über die Zeit oder den Raum macht – das System ist ergodisch.

In der statistischen Mechanik ist die Annahme, dass sich reale Teilchen tatsächlich ergodisch verhalten, von zentraler Bedeutung für die Ableitungen makroskopischer thermodynamischer Größen, siehe Ergodenhypothese.

Ein weiteres Beispiel ist das Würfeln: Die mittlere Augenzahl von 1000 Würfelwürfen kann man sowohl dadurch ermitteln, dass man mit einem Würfel 1000-mal hintereinander würfelt, als auch dadurch, dass man mit 1000 Würfeln einmal gleichzeitig würfelt. Das liegt daran, dass die 1000 gleichzeitig geworfenen Würfel alle in leicht verschiedenen Zuständen (Lage im Raum, Ausrichtung der Kanten, Geschwindigkeit etc.) sein werden und damit ein Mittel über den Zustandsraum darstellen. Daher kommt auch der Begriff Scharmittel: Bei einem ergodischen System kann man die Eigenschaften einer ganzen „Schar“ von Anfangszuständen gleichzeitig bestimmen und damit dieselbe statistische Information gewinnen, wie wenn man einen Anfangszustand für einen längeren Zeitraum betrachtet. Dies wird auch bei Messungen ausgenutzt, um bei verrauschten Daten zuverlässige Ergebnisse in kurzer Zeit zu gewinnen.

Ein einfaches Beispiel für einen nicht ergodischen Prozess erhält man so: Eine „faire Münze“ wird einmal geworfen. Falls „Kopf“ fällt, nimmt man die konstante Folge , anderenfalls die konstante Folge . Die Scharmittel sind hier gleich , die Zeitmittel jedoch 1 oder 0 (jeweils mit Wahrscheinlichkeit ).

Ergodizität in der Zeitreihenanalyse

Für die statistische Inferenz mit Zeitreihen müssen Annahmen getroffen werden, da in der Praxis meist nur eine Realisierung des die Zeitreihe generierenden Prozesses vorliegt. Die Annahme der Ergodizität bedeutet, dass Stichprobenmomente, die aus einer endlichen Zeitreihe gewonnen werden, für quasi gegen die Momente der Grundgesamtheit konvergieren. Für und konstant:
mittelwertergodisch:

varianzergodisch:
Diese Eigenschaften bei abhängigen Zufallsvariablen lassen sich nicht empirisch nachweisen und müssen daher unterstellt werden. Damit ein stochastischer Prozess ergodisch sein kann, muss er sich in einem statistischen Gleichgewicht befinden, d. h., er muss stationär sein.

Besondere Anwendungsfälle

Die Ergodizitätsökonomie untersucht, unter welchen Bedingungen Agenten mit ähnlicher Qualifikation – entgegen klassischer Wettbewerbssituationen – kooperieren und langfristig individuelles Risiko minimieren.[2][3] Es wird damit als Ansatz gegen die Spaltung westlicher Gesellschaften interpretiert.[4][5]

Verwandte Begriffe

Eng verwandt ist der Begriff der Mischung, er stellt eine Verschärfung der Ergodizität dar. Zur feineren Klassifikation teilt man die Mischungen dann noch ein in „stark mischend“ und „schwach mischend“.

Literatur

  • Peter Walters: An introduction to ergodic theory. Springer, New York 1982, ISBN 0-387-95152-0.

Einzelnachweise

  1. http://www.tf.uni-kiel.de/matwis/amat/mw1_ge/kap_6/advanced/t6_3_1.html
  2. Ole Peters, Murray Gell-Mann: Evaluating gambles using dynamics. In: Chaos. An Interdisciplinary Journal of Nonlinear Science. American Institute of Physics, 2. Februar 2016, abgerufen am 6. Januar 2020 (english).
  3. Ole Peters: The ergodicity problem in economics. In: Nature Physics. Nature Research, 2. Dezember 2019, abgerufen am 6. Januar 2020 (english).
  4. Mark Buchanan: How ergodicity reimagines economics for the benefit of us all. In: Aeon. Aeon Media Group Ltd., 14. August 2019, abgerufen am 6. Januar 2020 (english).
  5. Paul Jerchel: Es ist mehr, wenn wir teilen. In: Contraste. Zeitung für Selbstorganisation. 37, Nr. 428, Kassel 2020-05, ISSN 0178-5737, S. 8.
Dieser Artikel basiert ursprünglich auf dem Artikel Ergodizität aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.