Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Hausdorff-Metrik
Die Hausdorff-Metrik, benannt nach dem Mathematiker Felix Hausdorff, misst den Abstand zwischen nichtleeren kompakten Teilmengen , eines metrischen Raums .
Anschaulich haben zwei kompakte Teilmengen einen geringen Hausdorff-Abstand, wenn es zu jedem Element der einen Menge ein Element der anderen Menge gibt, zu dem dieses einen geringen Abstand hat.
Definition
Als Hilfsmittel definiert man den Abstand zwischen einem Punkt und einer nichtleeren kompakten Teilmenge unter Rückgriff auf die Metrik des Raums als
Dann definiert man den Hausdorff-Abstand zwischen zwei nichtleeren kompakten Teilmengen und als
Man kann zeigen, dass in der Tat eine Metrik auf der Menge aller kompakten Teilmengen von ist.
Äquivalent kann man den Hausdorff-Abstand definieren als
- ,[1]
wobei
- ,
dies ist die Menge aller Punkte mit einem Abstand von höchstens zur Menge .
Anwendungen
In der Theorie der iterierten Funktionensysteme werden Fraktale als Folgengrenzwerte im Sinne der Hausdorff-Metrik erzeugt.
Siehe auch
Literatur
- M. I. Voitsekhovskii: Hausdorff metric. In: Michiel Hazewinkel (Hrsg.): Encyclopaedia of Mathematics. Springer-Verlag, Berlin 2002, ISBN 1-4020-0609-8 (Online).
Einzelnachweise
- ↑ James Munkres: Topology. Prentice Hall, 1999, ISBN 0-13-181629-2, S. 280–281 (https://books.google.com/books?id=XjoZAQAAIAAJ&pg=PA280).
Dieser Artikel basiert ursprünglich auf dem Artikel Hausdorff-Metrik aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |