Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Hausman-Test
Der Hausman-Spezifikationstest, auch Durbin-Wu-Hausman-Test genannt, ist ein Testverfahren aus der mathematischen Statistik. Er ist ein Test auf Endogenität, das heißt ein Test auf den Zusammenhang zwischen den erklärenden (unabhängigen) Variablen und der Störgröße. Er wurde 1978 von Jerry Hausman entwickelt, um bei Paneldatenmodellen zu entscheiden, ob eher ein Fixed-Effects-Modell (FE-Modell) oder ein Random-Effects-Modell (RE-Modell) vorliegt (siehe Lineare Paneldatenmodelle). Ersteres unterstellt für jedes betrachtete Individuum eine individuelle (mittels Regression zu ermittelnde) Abweichung vom Panel-Mittelwert, während diese Abweichung beim RE-Modell eine normalverteilte Zufallsgröße darstellt.
Teststatistik
Die Nullhypothese, dass ein RE-Modell vorliegt, wird abgelehnt, wenn die Teststatistik größer ist als das entsprechende Perzentil der -Verteilung mit K Freiheitsgraden:
Die benutzten Variablen sind hierbei wie folgt definiert:
- : Konstanter Regressionsparameter (Achsenabschnitt)
- : Zahl der Regressoren im Paneldatenmodell
- : Vektor der geschätzten K Regressionskoeffizienten der Random-Effects-Schätzung
- : Vektor der geschätzten K Regressionskoeffizienten der Fixed-Effects-Schätzung
- : geschätzte Varianz-Kovarianzmatrix der FE-Schätzer
- : Fehlerterme, Abweichung zwischen geschätztem und beobachtetem Wert
Test auf Endogenität
Falls die Schätzer nicht verzerrt sind (also gilt und somit keine Edogenität vorliegt), ist der Fixed-Effects-Schätzer immer konsistent (führt also mit zunehmender Zahl der Beobachtungen immer näher an den wahren Wert des Parameters heran), während der Random-Effects-Schätzer nur dann konsistent, aber zusätzlich auch noch effizient ist, wenn und unkorreliert sind. Der Hausman-Test vergleicht die Regressoren der beiden Verfahren. Unterscheiden sie sich signifikant, wird die Nullhypothese abgelehnt. Somit ist eine Schätzung mittels Fixed Effects angeraten.
Beim Testen auf Endogenität stellt eine einfache Variante des Hausman-Tests die Untersuchung einzelner Variablen mit Hilfe eines Residuen-Tests dar. Dabei werden die folgenden beiden Thesen gegeneinander getestet:
- die Nullhypothese: es liegt keine Korrelation zwischen untersuchter Variable und Störgröße vor,
- gegen die Alternativhypothese: es liegt Korrelation zwischen diesen vor
Der Test besteht aus zwei Stufen: Zunächst wird die zu untersuchende Variable auf alle exogenen Variablen des Modells regressiert. Die Residuen dieser Regression werden dann in der zweiten Stufe des Tests in der Ausgangsgleichung als zusätzlicher Regressor verwendet. Das so erweiterte Modell wird mit Hilfe der Methode der kleinsten Quadrate geschätzt. Ist der Koeffizient der Residuenvariablen signifikant, besteht Korrelation zwischen Störgröße und dem untersuchten Regressor, das heißt die Nullhypothese muss abgelehnt werden und die Existenz von Endogenität als bestätigt angesehen werden[1].
Literatur
- Marno Verbeek (2004): A Guide to Modern Econometrics. 2. Auflage, Chichester: John Wiley & Sons.
- Katja Wolf (2005): Vergleich von Schätz- und Testverfahren unter alternativen Spezifikationen linearer Panelmodelle. Lohmar/Köln: Eul.
- Jerry A. Hausman (1978): Specification Tests in Econometrics. In: Econometrica 46/6, S. 1251–1271.
Einzelnachweise
- ↑ Wooldridge, Jeffrey M. (2003): Introductory Econometrics: a Modern Approach. 2. Auflage, Australia/Cincinnati (Ohio): South-Western College Pub.
Dieser Artikel basiert ursprünglich auf dem Artikel Hausman-Test aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |