Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Komplement (Mengenlehre)

Aus Jewiki
Zur Navigation springen Zur Suche springen

In der Mengentheorie und anderen Teilgebieten der Mathematik sind zwei verschiedene Komplemente definiert: Das relative Komplement und das absolute Komplement.

Relatives Komplement

Definition

Das (relative) Komplement der Menge A in B ist wiederum eine Teilmenge von B und hier blau gefärbt.

Sind und Mengen und sei eine Teilmenge von , dann ist das relative Komplement, auch mengentheoretisches Komplement oder mengentheoretische Differenz genannt, die Menge genau der Elemente aus , welche nicht in enthalten sind. Die formale Definition des relativen Komplements ist

und man sagt „B ohne A“. Das Komplement unterscheidet sich von der normalen Subtraktion von Mengen nur dadurch, dass die Teilmengenbeziehung zwischen den betrachteten Mengen bestehen muss. Relativ heißt es deshalb, weil man für eine Menge das Komplement nicht angeben kann, ohne den Kontext zu kennen. Ist hingegen die Menge fixiert, so kann man anstelle von „das relative Komplement von A in B“ auch einfach nur „das Komplement von A“ nennen.

Beispiele

  • Für (reelle Zahlen) und (rationale Zahlen), ist die Menge der irrationalen Zahlen.

Eigenschaften

Im Folgenden sind einige Eigenschaften relativer Komplemente im Zusammenhang mit den mengentheoretischen Operationen Vereinigung und Durchschnitt aufgelistet. Seien , und Mengen, dann gelten folgende Identitäten:

Absolutes Komplement

Definition

Das Komplement von A in U

Ist ein Universum definiert, so wird für jede Menge das relative Komplement von in auch absolutes Komplement (oder einfach Komplement) von genannt und als (manchmal auch als , oder auch als , bzw. wenn fest ist) notiert, es ist also:

Beispiel

Ist das Universum zum Beispiel die Menge der natürlichen Zahlen, so ist das (absolute) Komplement der Menge der geraden Zahlen die Menge der ungeraden Zahlen.

Eigenschaften

Im Folgenden sind einige Eigenschaften absoluter Komplemente im Zusammenhang mit den mengentheoretischen Operationen Vereinigung und Durchschnitt aufgelistet. Seien und Teilmengen des Universums , dann gelten folgende Identitäten:

De Morgansche Regeln:

Komplementgesetze:

  • Ist , so ist

Involution:

Beziehungen zwischen relativen und absoluten Komplementen:

Die ersten beiden Komplementgesetze zeigen, dass, wenn eine nichtleere Teilmenge von ist, eine Partition von ist.

Siehe auch

Literatur

  • Oliver Deiser: Einführung in die Mengenlehre. Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo. 2., verbesserte und erweiterte Auflage. Springer, Berlin u. a. 2004, ISBN 3-540-20401-6.
Dieser Artikel basiert ursprünglich auf dem Artikel Komplement (Mengenlehre) aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.