Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Kugelzweieck
Ein Kugelzweieck, auch sphärisches Zweieck, Kugelzweiseit oder Zwickel, ist in der sphärischen Geometrie (Kugelgeometrie) eine Punktmenge auf einer Kugel, die von zwei Großkreisen begrenzt wird. Auf der Erdkugel bildet zum Beispiel die von zwei Meridianen eingeschlossene Fläche ein Kugelzweieck, wobei Nord- und Südpol der Erde die Ecken sind. Das von einem Kugelzweieck eingeschlossene Volumen ist ein Kugelkeil.
Die beiden Ecken eines beliebigen Kugelzweiecks liegen auf der Kugeloberfläche genau gegenüber. Die Seitenlängen betragen jeweils 180° bzw. den halben Umfang eines Großkreises. Die beiden Innenwinkel sind gleich groß.
Für den Flächeninhalt des Kugelzweiecks gilt ( ist die Oberfläche der gesamten Kugel):
Hier stehen
Ist im Bogenmaß gegeben, lässt sich die Formel auch schreiben als:
Beispiel: Auf der Erdoberfläche hat ein Kugelzweieck, das von zwei benachbarten Meridianen begrenzt wird (also = 1°), die Fläche
Siehe auch
Literatur
- Bronstein-Semendjajew: Taschenbuch der Mathematik. Verlag Harri Deutsch, 2000, S. 167, ISBN 3-8171-2005-2
Weblinks
Dieser Artikel basiert ursprünglich auf dem Artikel Kugelzweieck aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |