Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Länge (Algebra)

Aus Jewiki
Zur Navigation springen Zur Suche springen

Im mathematischen Teilgebiet der Algebra bezeichnet die Länge ein Maß für die Größe eines Moduls.

Definition

Es sei ein Modul über einem Ring . Die Länge von ist das Supremum der Längen von Ketten von Untermoduln der Form[1]

Die Länge wird oft mit oder bezeichnet.

Eigenschaften

exakt, so ist ; sind zwei dieser Zahlen endlich, so ist es auch die dritte.
  • Eine Kompositionsreihe ist eine Kette von Untermodulen, die einfache Subquotienten besitzt. Die Länge jeder Kompositionsreihe ist gleich der Länge des Moduls.

Beispiele

  • Vektorräume haben genau dann endliche Länge, wenn sie endlichdimensional sind; in diesem Fall ist ihre Länge gleich ihrer Dimension.
  • Der -Modul hat unendliche Länge: Für jede natürliche Zahl ist
eine Kette von Untermoduln der Länge .

Literatur

  • Henning Krause, Claus Michael Ringel ed.: Infinite length modules. Birkhäuser, Basel 2000, ISBN 3-7643-6413-0.

Einzelnachweise

  1. Siegfried Bosch: Algebra, 6. Auflage 2006, Springer-Verlag, ISBN 3-540-40388-4, S. 72.
  2. Henning Krause, Claus Michael Ringel ed.: Infinite length modules. Birkhäuser, Basel 2000, ISBN 3-7643-6413-0, S. 3.
Dieser Artikel basiert ursprünglich auf dem Artikel Länge (Algebra) aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.