Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Oppenheim-Vermutung

Aus Jewiki
Zur Navigation springen Zur Suche springen

In der Mathematik ist die Oppenheim-Vermutung eine inzwischen bewiesene Vermutung über die Werte quadratischer Formen und das klassische Beispiel für die Anwendung ergodentheoretischer Methoden in der Zahlentheorie.

Aussage

Sei und

eine indefinite quadratische Form in Variablen, die kein Vielfaches einer Form mit rationalen Koeffizienten ist.

Dann gibt es für jedes ein mit

.

Als Korollar erhält man, dass eine dichte Teilmenge von ist.

Beispiel: Für jedes gibt es ganze Zahlen mit

.

Geschichte

Die Vermutung in dieser Form wurde 1953 (eine schwächere Vorgänger-Version schon 1929) von Alexander Oppenheim aufgestellt und für von Bryan Birch, Harold Davenport und D. Ridout bewiesen. Der allgemeine Fall lässt sich auf den Fall zurückführen und dieser wurde von M. S. Raghunathan in folgende Vermutung über die Links-Wirkung von auf dem Quotientenraum umformuliert:

Jeder beschränkte -Orbit auf ist kompakt.

Diese Vermutung wurde 1987 von Grigori Margulis bewiesen. Eine allgemeinere Version der Raghunathan-Vermutung ist der heutige Satz von Ratner.

Dieser Artikel basiert ursprünglich auf dem Artikel Oppenheim-Vermutung aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.