Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Quantil

Aus Jewiki
(Weitergeleitet von Perzentile)
Zur Navigation springen Zur Suche springen
Zwei Beispiele: Einmal die Standardnormalverteilung und einmal eine Chi-Quadrat-Verteilung mit drei Freiheitsgraden (schiefe Verteilung). Den jeweiligen Wahrscheinlichkeiten werden ihre Quantile zugeordnet; die Fläche unter der abgebildeten Dichte von minus unendlich bis zum Quantil ist der jeweilige Wert.

Ein Quantil ist ein Lagemaß in der Statistik. Anschaulich ist ein Quantil ein Schwellwert: ein bestimmter Anteil der Werte ist kleiner als das Quantil, der Rest ist größer. Das 25%-Quantil beispielsweise ist der Wert, für den gilt, dass 25% aller Werte kleiner sind als dieser Wert. Quantile erlauben ganz praktische Aussagen im Stile von „25% aller Frauen sind kleiner als 1,62 m“ – wobei 1,62 m hier das 25%-Quantil ist.

Genauer ist das Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Quantil, wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} eine reelle Zahl zwischen 0 und 1 ist, ein Wert einer Variablen oder Zufallsvariablen, der die Menge aller Merkmalswerte (salopp „die Verteilung“) in zwei Abschnitte unterteilt: Links vom Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Quantil liegt der Anteil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \equiv p \cdot 100\,\%} aller Beobachtungswerte oder der Gesamtzahl der Zufallswerte oder der Fläche unter der Verteilungskurve; rechts davon liegt der jeweilige restliche Anteil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1-p \equiv (1-p) \cdot 100\,\%} . Die Zahl Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} heißt auch der Unterschreitungsanteil.

Spezielle Quantile sind der Median, die Quartile, die Quintile, die Dezile und die Perzentile.

Als Quantil der Ordnung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} oder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Quantil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q(p)} (veraltet auch „Fraktil“) wird in der Statistik ein Merkmalswert bezeichnet, unterhalb dessen ein vorgegebener Anteil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} aller Fälle der Verteilung liegt. Jeder Wert unterhalb von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q(p)} unterschreitet diesen vorgegebenen Anteil. Dabei kann der Unterschreitungsanteil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} auch als eine reelle Zahl zwischen 0 (gar kein Fall der Verteilung) und 1 (alle Fälle bzw. 100 % der Verteilung) angegeben werden.

Definition

Quantile Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_i} zu den Wahrscheinlichkeiten Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_i}
Die Quantilfunktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X^{-1}(p)}

Sei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine Zufallsvariable und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} ihre Verteilungsfunktion. Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\in(0,1)} wird die Menge aller p-Quantile von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X} oder von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} beschrieben durch

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x\in\R\mid P(X \le x) \ge p \land P(X \ge x) \ge 1- p\}}

Diese Menge ist ein abgeschlossenes Intervall und hat die obere Grenze

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sup\{x\in\R\mid P(X \ge x) \ge 1- p\}=\sup\{x\in\R\mid F_X(x) \le p\}}

und die untere Grenze

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X^{-1}(p):=\inf\{x\in\R\mid P(X \le x) \ge p\}=\inf\{x\in\R \mid F_X(x)\ge p\}} .

Quantilfunktion

Ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X} invertierbar, beispielsweise bei stetigen Verteilungen mit streng monotoner Verteilungsfunktion, fallen obere und untere Grenze zusammen, wodurch die obengenannte Menge einelementig bzw. das p-Quantil eindeutig wird.

Die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X^{-1}:(0,1)\to \R} heißt Quantilfunktion oder verallgemeinerte inverse Verteilungsfunktion, der Wert Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X^{-1}(p)} , zuweilen auch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_X(p)} geschrieben, dementsprechend Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Quantil von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X} oder von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} (ist klar, welche Zufallsvariable gemeint ist, wird diese oft auch weggelassen.).

In den Grafiken rechts ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_2} das eindeutige Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_2} -Quantil, ferner ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_3} das eindeutige Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_3} -Quantil, Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_3^+} -Quantil sowie Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_3^-} -Quantil.

Hat Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X} eine Sprungstelle bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q} , ist also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(X=q)>0} , so gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X(F_X^{-1}(p))>p} für fast alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X^{-1}(p)=q} .

In der Grafik rechts oben ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(X=q_3)=P(X\leq q_3)-P(X<q_3) = p_3^+-p_3^- \ > \ 0}

und daher Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(F^{-1}(p_3^+))=F(F^{-1}(p_3^-))=F(q_3)=p_3^+ \ > \ p_3^-} .

Nicht-Eindeutigkeit

Ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X} für ein Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} nicht invertierbar, also ein Stück weit konstant, besitzt die Quantilfunktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X^{-1}} für dieses Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} eine Sprungstelle, bei der sie als Funktionswert das kleinstmögliche p-Quantil angibt. In der Grafik ist

  • Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_1^-=F_X^{-1}(p_1)} das kleinstmögliche Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1} -Quantil,
  • Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_1^+} das größtmögliche Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1} -Quantil, und
  • jedes Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_1\in(q_1^-,q_1^+)} ein weiteres Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1} -Quantil.

Beim oft verwendeten 50%-Quantil sind zur besseren Unterscheidung sogar eigene Begrifflichkeiten üblich: Der Untermedian Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_X^{-1}(0{,}5)} ist das kleinstmögliche 50%-Quantil, der Median das mittlere 50%-Quantil und der Obermedian das größtmögliche 50%-Quantil, wobei alle drei deutlich auseinanderfallen können.

Beispiel

Das Quantil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}3}} (also das 0,3-Quantil) ist der Wert des Punktes einer Verteilung, unterhalb dessen sich 30 % aller Fälle der Verteilung befinden.

Ein p-Quantil mit Unterschreitungsanteil

Berechnung empirischer Quantile

Empirische Quantile teilen die Daten einer Messreihe prozentual in zwei Teile, sodass mindestens Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \cdot 100%} der Daten kleiner oder gleich dem Quantil sind und mindestens Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1 - p) \cdot 100%} größer gleich. Angenommen die Messdaten sind geordnet in Form einer Rangliste gegeben: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1, x_2, \dots, x_n} . Sei weiter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 < p < 1} . Die Formel für die Berechnung eines p-Quantils ist dann wie folgt:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde x_p = \begin{cases} \frac{1}{2}(x_{n \cdot p} + x_{n \cdot p + 1}), & \text{wenn }n \cdot p\text{ ganzzahlig,}\\ x_{\lceil n \cdot p \rceil}, & \text{wenn }n \cdot p\text{ nicht ganzzahlig.} \end{cases}}

Dabei ist für eine reelle Zahl Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} der Wert Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lceil x \rceil} die kleinste ganze Zahl, die größer oder gleich Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} ist (also die Aufrundungsfunktion).[1]

  • Beispiel 1:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} & x_1, \dots, x_{10} = (1, 1, 1, 3, 4, 7, 9, 11, 13, 13), ~ p = 0{,}3 \\ & n \cdot p = 10 \cdot 0{,}3 = 3 \text{ ist ganzzahlig} \rightarrow \tilde x_{0{,}3} = \frac{1}{2}(x_{n \cdot p} + x_{n \cdot p + 1}) = \frac{1}{2}(x_3 + x_4) = \frac{1}{2}(1 + 3) = 2 \end{align} }
  • Beispiel 2:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} & x_1, \dots, x_{10} = (1, 1, 1, 3, 4, 7, 9, 11, 13, 13), ~ p = 0{,}75 \\ & n \cdot p = 10 \cdot 0{,}75 = 7{,}5 \text{ ist nicht ganzzahlig} \rightarrow \tilde x_{0{,}75} = x_{\lceil n \cdot p \rceil} = x_{\lceil 7{,}5 \rceil} = x_8 = 11 \end{align} }

Besondere Quantile

Für einige bestimmte Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} haben die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Quantile zusätzliche Bezeichnungen.

Median

Hauptartikel: Median

Der Median oder Zentralwert entspricht dem Quantil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}5}} (0,5-Quantil). Es erfolgt also eine Einteilung aller Fälle der Verteilung in zwei umfangsgleiche Teile. Bei jeder Einteilung in eine ungerade Anzahl von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Quantilen mit äquidistant-verteilten Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} (was eine gerade Anzahl umfangsgleicher Teile impliziert) entspricht der Median jeweils dem mittleren Quantil (beispielsweise dem 2. Quartil Q2 oder dem 50. Perzentil P50).

Terzil

Durch Terzile wird die größengeordnete Menge der Werte in drei Abschnitte gleichen Umfangs geteilt: unteres, mittleres und oberes Drittel.

Quartil

Darstellung des Interquartilabstands einer Normalverteilung.

Quartile (lateinisch „Viertelwerte“) sind die Quantile Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}25}} (0,25-Quantil), Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}5}} (0,5-Quantil = Median) und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}75}} (0,75-Quantil), die auch als Q1 („unteres Quartil“), Q2 („mittleres Quartil“) und Q3 („oberes Quartil“) bezeichnet werden. Sie sind die in der Statistik mit am häufigsten verwendete Form der Quantile.

Der (Inter-)Quartilabstand oder auch (Inter-)Quartilsabstand (englisch interquartile range) bezeichnet die Differenz zwischen dem oberen und dem unteren Quartil, also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}75}-Q_{0{,}25}} und umfasst daher 50 % der Verteilung. Der Quartilabstand wird als Streuungsmaß verwendet.

Siehe auch: Streuung (Statistik)

Quintil

Durch Quintile (lateinisch „Fünftelwerte“) wird die Menge der Werte der Verteilung in 5 umfangsgleiche Teile zerlegt. Unterhalb des ersten Quintils, d. h. des Quantils Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}2}} , liegen 20 % der Werte der Verteilung, unterhalb des zweiten Quintils (Quantil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}4}} ) 40 % usw.

Dezil

Durch Dezile (lateinisch „Zehntelwerte“) wird die Menge der verteilten Werte in 10 umfangsgleiche Teile zerlegt. Entsprechend liegen dann z. B. unterhalb des dritten Dezils (Quantil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{,}3}} ) 30 % der Werte. Dezile teilen ein der Größe nach geordnetes Datenbündel in 10 umfangsgleiche Teile. Das 10-%-Dezil (oder 1. Dezil) gibt an, welcher Wert die unteren 10 % von den oberen 90 % der Datenwerte trennt, das 2. Dezil, welcher Wert die unteren 20 % von den oberen 80 % der Werte trennt, usw. Der Abstand zwischen dem 10-%-Dezil und dem 90-%-Dezil heißt Interdezilbereich.

Perzentil

Durch Perzentile (lateinisch „Hundertstelwerte“), auch Prozentränge genannt, wird die Verteilung in 100 umfangsgleiche Teile zerlegt. Perzentile teilen die Verteilung also in 1-%-Segmente auf. Daher können Perzentile als Quantile betrachtet werden, bei denen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 100 \cdot p} eine ganze Zahl ist. So entspricht das Quantil Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_{0{.}97}} dem Perzentil P97: unterhalb dieses Punktes liegen 97 % aller Fälle der Verteilung.

a-Fraktil

Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} aus Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (0,1)} wird das Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1-a)} -Quantil auch als Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} -Fraktil bezeichnet. Diese Unterteilung wird z. B. in der als „Paretoprinzip“ bezeichneten Vermutung verwendet.

Beispiele

  • Wenn eine Schule 141 Schüler hat, so hat derjenige Schüler den Alters-Prozentrang von 50, der älter ist als die 70 jüngeren Schüler, aber jünger als die 70 älteren Schüler. Ein Prozentrang von 50 oder das 50. Perzentil entspricht dem 0,5-Quantil, also dem Median.
    Für den Prozentrang ist unerheblich, welche Altersunterschiede zwischen den Schülern bestehen; der Prozentrang gibt nur Auskunft über die Position des Einzelnen innerhalb der Gruppe (Stichprobe). Das Alter der Person mit Prozentrang 50 ist deshalb nicht identisch mit dem Durchschnittsalter der betrachteten Gruppe. Deshalb würde sich am Median auch nichts ändern, wenn man die älteren 70 Schüler durch 70 Rentner ersetzen würde.
  • In einer Schulklasse sind 13 Aufsätze geschrieben worden, mit der folgenden (sortierten) Notenverteilung:
Aufsatz A B C D E F G H I J K L M
Note 1 2 2 2 3 3 3 4 4 4 4 5 6
Die Noten der Aufsätze D („2“), G („3“) und J („4“) entsprechen jeweils den Quartilen Q1, Q2 (d. h. dem Median) und Q3. Der Durchschnitt ist aber ≈ 3,31 (43/13), eine Zahl, die in der Liste gar nicht vorkommt.
  • Wird die Körpergröße eines Kindes als Perzentil ausgedrückt, bedeutet dies, dass die Körpergröße in Bezug auf die Körpergrößen der Altersgenossen angegeben wird. Eine Körpergröße auf dem 20. Perzentil bedeutet beispielsweise, dass 20 % der Kinder gleichen Alters und gleichen Geschlechts nicht größer als das betreffende Kind sind (80 % sind größer).
  • Ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine exponentialverteilte Zufallsvariable mit Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda > 0} , so gilt für ihre Verteilungsfunktion
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x) = P(X \leq x) = 1 - e^{-\lambda x}} für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \geq 0} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x) = P(X \leq x) = 0} für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x < 0} .
Durch Auflösen der Gleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x) = p} nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} erhält man für ihre Quantilfunktion
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F^{-1}(p) = - \frac{1}{\lambda} \ln(1-p).}

Siehe auch

Literatur

  • Hans-Otto Georgii: Stochastik. 2 Auflage. de Gruyter, Berlin 2004, ISBN 3-11-018282-3, S. 225 (Definition Quantil, Quartil, a-Fraktil).

Einzelnachweise

  1. Udo Bankhofer, Jürgen Vogel: Datenanalyse und Statistik: Eine Einführung für Ökonomen im Bachelor. Gabler Verlag, Wiesbaden 2008, ISBN 978-3-8349-0434-8, S. 39.
Dieser Artikel basiert ursprünglich auf dem Artikel Quantil aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.