Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Rekursive Programmierung
Bei der rekursiven Programmierung ruft sich eine Prozedur, Funktion oder Methode in einem Computerprogramm selbst wieder auf. Auch der gegenseitige Aufruf stellt eine Rekursion dar.
Wichtig bei der rekursiven Programmierung ist eine Abbruchbedingung in dieser Funktion, weil sich das rekursive Programm sonst (theoretisch) unendlich oft selbst aufrufen würde.
Rekursive Programmierung kann unter anderem in prozeduralen und objektorientierten Programmiersprachen angewandt werden. Obwohl diese Sprachen in ihrem Sprachstandard die Rekursion ausdrücklich zulassen, stellen Selbstaufrufe und gegenseitige Aufrufe hier (aufgrund der verwendeten Programmierparadigmen) jedoch eher die Ausnahme dar. Auch wenn in der Praxis zur Verbesserung des Programmierstils (Lesbarkeit / einfachere Implementierung) auch hier durchaus häufig auf Rekursion zurückgegriffen wird, sind die meisten Funktionen in diesen Sprachen doch rein iterativ.
In einigen Sprachen, wie z. B. in manchen funktionalen Programmiersprachen oder Makroprozessoren, muss die rekursive Programmiermethode zwingend verwendet werden, da iterative Sprachkonstrukte fehlen.
Beispiel
Ein Beispiel für die Verwendung einer rekursiven Programmierung ist die Berechnung der Fakultät einer Zahl. Die Fakultät ist das Produkt aller ganzen Zahlen von 1 bis zu dieser Zahl. Die Fakultät von 4 ist also .
Mathematiker definieren die Fakultät meistens so (eine rekursive Definition):
- Die Fakultät der Zahl 0 ist definitionsgemäß 1.
- Die Fakultät einer ganzen Zahl, die größer als Null ist, ist das Produkt dieser Zahl mit der Fakultät der nächstkleineren ganzen Zahl.
Die Definition funktioniert so:
- Will man die Fakultät von 4 berechnen, so muss man zunächst die Fakultät von 3 berechnen und das Ergebnis mit 4 multiplizieren.
- Will man die Fakultät von 3 berechnen, so muss man zunächst die Fakultät von 2 berechnen und das Ergebnis mit 3 multiplizieren.
- Will man die Fakultät von 2 berechnen, so muss man zunächst die Fakultät von 1 berechnen und das Ergebnis mit 2 multiplizieren.
- Will man die Fakultät von 1 berechnen, so muss man zunächst die Fakultät von 0 berechnen und das Ergebnis mit 1 multiplizieren.
- Die Fakultät von 0 ist nach Definition 1.
- Die Fakultät von 1 ist also 1*1=1
- Die Fakultät von 2 ist also 1*1*2=2
- Die Fakultät von 3 ist also 1*1*2*3=6
- Die Fakultät von 4 ist also 1*1*2*3*4=24
In einer Sprache wie Pascal, die rekursive Programmierung zulässt, kann man die Fakultät folgendermaßen eingeben:
Man definiert eine Funktion fac, die eine Zahl x als Eingabewert bekommt. Diese Funktion multipliziert x mit dem Rückgabewert von fac(x-1) außer x=0, dann liefert die Funktion das Ergebnis 1. Dies ist die Abbruchbedingung:
Rekursive Implementation der Fakultätsfunktion
function fac(x : Integer): Integer; begin if x = 0 then fac := 1 else fac := x * fac(x - 1); end;
Mit der Startzahl x=4 würde der Computer rechnen:
4*(3*(2*(1*fac(0))))
heraus kommt dann das richtige Ergebnis, nämlich 24.
Effizienz
Rekursive Programme haben in der Regel keine gute Performance. Durch die wiederholten Funktionsaufrufe (Inkarnationen) wird immer wieder derselbe Methodeneintrittscode bearbeitet und bei jeder Inkarnation der Kontext gesichert, was zu zusätzlichem Programmcode und höherem Arbeitsspeicherverbrauch führt. Alle rekursiven Algorithmen lassen sich jedoch auch durch iterative Programmierung implementieren (und umgekehrt). Man hätte die Fakultät auch so implementieren können:
Iterative Implementation der Fakultätsfunktion
function fac(x : Integer): Integer; var i, Ergebnis: Integer; begin Ergebnis:=1; for i:=1 to x do Ergebnis:=Ergebnis*i; fac:=Ergebnis; end;
Hierbei gilt die Regel, dass für einfache Probleme eine iterative Implementierung häufig effizienter ist. So sollte z. B. auch die Fakultätsfunktion der Effizienz wegen in der Praxis iterativ implementiert werden. Bei komplizierten Problemstellungen (z. B. Aufgaben mit Bäumen) hingegen lohnt sich oftmals der Einsatz einer rekursiven Lösung, da für solche Probleme eine iterative Formulierung schnell sehr unübersichtlich - und ineffizient - werden kann, da im schlimmsten Fall der Stack durch den iterativen Algorithmus selbst verwaltet werden muss, was sonst der Prozessor direkt erledigt.
Nicht alle höheren Programmiersprachen lassen rekursive Aufrufe zu; ein Beispiel dazu ist Fortran. Andere Programmiersprachen sind dagegen grundsätzlich rekursiv (wie z. B. Prolog). Solche rekursiven Programmiersprachen (und auch andere Sprachen wie z. B. Scheme) setzen die Rekursion meistens effizient um.
Implementierung
Rekursion wird in der Regel durch einen Stack implementiert, der die Rücksprungadressen, aber auch alle lokalen Variablen und evtl. Funktionsergebnisse aufnimmt. Würde man, wie im obenstehenden Beispiel, die Fakultät von 4 berechnen, so würde jeder Aufruf folgende Informationen auf den Stapel legen:
- Platz für Ergebnis
- Argument x
- Rücksprungadresse
Zunächst würde im Hauptprogramm also fac(4) aufgerufen und damit die folgenden Informationen auf den Stapel gelegt:
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
Stapelzeiger | 3 | Rücksprungadresse ins Hauptprogramm |
Die Fakultätsfunktion prüft jetzt, ob das Argument 0 ist. Da dies nicht der Fall ist, wird 4*fac(3) berechnet. Zunächst muss also fac mit dem Argument 3 aufgerufen werden:
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
3 | Rücksprungadresse ins Hauptprogramm | ||
4 | Platz für Ergebnis | ||
5 | 3 (Argument) | ||
Stapelzeiger | 6 | Rücksprungadresse in die Fakultätsfunktion |
Das Argument ist wieder ungleich 0, also geht's weiter mit 3*fac(2).
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
3 | Rücksprungadresse ins Hauptprogramm | ||
4 | Platz für Ergebnis | ||
5 | 3 (Argument) | ||
6 | Rücksprungadresse in die Fakultätsfunktion | ||
7 | Platz für Ergebnis | ||
8 | 2 (Argument) | ||
Stapelzeiger | 9 | Rücksprungadresse in die Fakultätsfunktion |
Das Argument ist wieder ungleich 0, also2*fac(1).
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
3 | Rücksprungadresse ins Hauptprogramm | ||
4 | Platz für Ergebnis | ||
5 | 3 (Argument) | ||
6 | Rücksprungadresse in die Fakultätsfunktion | ||
7 | Platz für Ergebnis | ||
8 | 2 (Argument) | ||
9 | Rücksprungadresse in die Fakultätsfunktion | ||
10 | Platz für Ergebnis | ||
11 | 1 (Argument) | ||
Stapelzeiger | 12 | Rücksprungadresse in die Fakultätsfunktion |
Das Argument ist wieder ungleich 0, also1*fac(0).
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
3 | Rücksprungadresse ins Hauptprogramm | ||
4 | Platz für Ergebnis | ||
5 | 3 (Argument) | ||
6 | Rücksprungadresse in die Fakultätsfunktion | ||
7 | Platz für Ergebnis | ||
8 | 2 (Argument) | ||
9 | Rücksprungadresse in die Fakultätsfunktion | ||
10 | Platz für Ergebnis | ||
11 | 1 (Argument) | ||
12 | Rücksprungadresse in die Fakultätsfunktion | ||
13 | Platz für Ergebnis | ||
14 | 0 (Argument) | ||
Stapelzeiger | 15 | Rücksprungadresse in die Fakultätsfunktion |
Jetzt ist das Argument 0, das Ergebnis also 1. Wir holen die Rücksprungadresse und das Argument vom Stapel und schreiben die 1 in den dafür vorgesehen Platz. Der Rücksprung führt in die Fakultätsfunktion zurück:
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
3 | Rücksprungadresse ins Hauptprogramm | ||
4 | Platz für Ergebnis | ||
5 | 3 (Argument) | ||
6 | Rücksprungadresse in die Fakultätsfunktion | ||
7 | Platz für Ergebnis | ||
8 | 2 (Argument) | ||
9 | Rücksprungadresse in die Fakultätsfunktion | ||
10 | Platz für Ergebnis | ||
11 | 1 (Argument) | ||
12 | Rücksprungadresse in die Fakultätsfunktion | ||
Stapelzeiger | 13 | 1 (Ergebnis) |
Jetzt kann man das Ergebnis mit dem Argument multiplizieren (1*1). Das neue Ergebnis ist wieder 1. Die Rücksprungadresse und das Argument werden vom Stapel geholt und das neue Ergebnis in den dafür vorgesehenen Platz geschrieben. Rücksprung in die Fakultätsfunktion:
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
3 | Rücksprungadresse ins Hauptprogramm | ||
4 | Platz für Ergebnis | ||
5 | 3 (Argument) | ||
6 | Rücksprungadresse in die Fakultätsfunktion | ||
7 | Platz für Ergebnis | ||
8 | 2 (Argument) | ||
9 | Rücksprungadresse in die Fakultätsfunktion | ||
Stapelzeiger | 10 | 1 (Ergebnis) |
Wiederum wird das Ergebnis mit dem Argument multipliziert (1*2). Zurück in die Fakultätsfunktion:
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
3 | Rücksprungadresse ins Hauptprogramm | ||
4 | Platz für Ergebnis | ||
5 | 3 (Argument) | ||
6 | Rücksprungadresse in die Fakultätsfunktion | ||
Stapelzeiger | 7 | 2 (Ergebnis) |
Das Ergebnis wird mit dem Argument multipliziert (2*3). Zurück in die Fakultätsfunktion:
Stapelanfang | 1 | Platz für Ergebnis | |
2 | 4 (Argument) | ||
3 | Rücksprungadresse ins Hauptprogramm | ||
Stapelzeiger | 4 | 6 (Ergebnis) |
Das Ergebnis wird mit dem Argument multipliziert (6*4). Zurück ins Hauptprogramm
Stapelanfang Stapelzeiger |
1 | 24 (Ergebnis) |
Das Hauptprogramm muss dann nur noch das Ergebnis 24 vom Stapel holen.
Siehe auch
Weblinks
- Vergleich zwischen Iteration und Rekursion (PDF-Datei; 27 kB)
Dieser Artikel basiert ursprünglich auf dem Artikel Rekursive Programmierung aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |