Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Wesentliche Erweiterung
Der Begriff der wesentlichen Erweiterung stammt aus dem mathematischen Teilgebiet der Kategorientheorie, genauer aus der Kategorie der Moduln über einem kommutativen Ring R mit einem vom Nullelement verschiedenen Einselement. Dort werden wesentliche Erweiterungen hauptsächlich dazu benötigt, injektive Hüllen zu definieren.
Definition
Sei R ein kommutativer Ring mit einem vom Nullelement verschiedenen Einselement und seien M und N zwei R-Moduln mit
Dann heißt N wesentliche Erweiterung von M, wenn für jeden R-Untermodul U von N mit gilt:
Bemerkungen
Sind M und N zwei R-Moduln mit . Dann gibt es einen Untermodul E von N, der maximale wesentliche Erweiterung von M in N ist. Ist N ein injektiver Modul, so ist auch E injektiv.
Wesentliche Erweiterungen graduierter Moduln über graduierten Ringen werden analog definiert.
Literatur
- David Eisenbud: Commutative algebra with a view toward Algebraic Geometry, Graduate Texts in Mathematics, no. 150, Springer Verlag, New York 2004, S.628,631. ISBN 0-387-94269-6
Dieser Artikel basiert ursprünglich auf dem Artikel Wesentliche Erweiterung aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |