Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Wesentliche Erweiterung

Aus Jewiki
Zur Navigation springen Zur Suche springen

Der Begriff der wesentlichen Erweiterung stammt aus dem mathematischen Teilgebiet der Kategorientheorie, genauer aus der Kategorie der Moduln über einem kommutativen Ring R mit einem vom Nullelement verschiedenen Einselement. Dort werden wesentliche Erweiterungen hauptsächlich dazu benötigt, injektive Hüllen zu definieren.

Definition

Sei R ein kommutativer Ring mit einem vom Nullelement verschiedenen Einselement und seien M und N zwei R-Moduln mit

Dann heißt N wesentliche Erweiterung von M, wenn für jeden R-Untermodul U von N mit gilt:

Bemerkungen

Sind M und N zwei R-Moduln mit . Dann gibt es einen Untermodul E von N, der maximale wesentliche Erweiterung von M in N ist. Ist N ein injektiver Modul, so ist auch E injektiv.

Wesentliche Erweiterungen graduierter Moduln über graduierten Ringen werden analog definiert.

Literatur

  • David Eisenbud: Commutative algebra with a view toward Algebraic Geometry, Graduate Texts in Mathematics, no. 150, Springer Verlag, New York 2004, S.628,631. ISBN 0-387-94269-6
Dieser Artikel basiert ursprünglich auf dem Artikel Wesentliche Erweiterung aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.