Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Moment (Stochastik)

Aus Jewiki
Zur Navigation springen Zur Suche springen

Momente von Zufallsvariablen sind Parameter der deskriptiven Statistik und spielen eine theoretische Rolle in der Stochastik. Die Begriffe Erwartungswert, Varianz, Schiefe und Wölbung zur Beschreibung einer Zufallsvariablen hängen eng mit deren Momenten zusammen.

Das Konzept von Momenten spielt auch außerhalb der Stochastik, beispielsweise in der technischen Mechanik, eine große Rolle. Interpretiert man Verteilungen als Massebelegungen der Abszisse, dann ist das erste Moment – der Mittelwert – der Schwerpunkt und das zweite zentrale Moment – die Varianz – das Trägheitsmoment der Belegung bei Rotation um eine senkrecht zur Abszisse stehende, durch den Schwerpunkt verlaufende Achse.[1]

Eine Verteilungsfunktion ist durch Angabe aller Momente der entsprechenden Zufallsvariable bestimmt, falls die Momente existieren und die Reihe der momenterzeugenden Funktion konvergiert. Die Bestimmung einer Verteilung mit vorgegebenen Momenten wird als das Momentenproblem bezeichnet.

Es gibt Verteilungen, deren Momente nur bis zu einer bestimmten Ordnung existieren. Dazu gehören die t-Verteilungen, deren Momente nur für Ordnungen existieren, die kleiner als der Freiheitsgrad sind. Im Spezialfall der Cauchy-Verteilung existiert also nicht einmal das erste Moment (der Erwartungswert), das ist auch bei der Lévy-Verteilung der Fall.

Definition

Es sei eine Zufallsvariable und eine natürliche Zahl. Dann bezeichnet man als Moment der Ordnung k von X oder kürzer als k-tes Moment von X den Erwartungswert der ‑ten Potenz von (unter der Voraussetzung, dass dieser existiert):

und als k-tes absolutes Moment von X wird der Erwartungswert der -ten Potenz des Absolutbetrages von bezeichnet:

In theoretischen Untersuchungen werden mitunter auch Momente nichtganzzahliger Ordnung betrachtet.

Die Existenz von Momenten einer bestimmten Ordnung liefert allgemein Aussagen über die Verteilung der Wahrscheinlichkeitsmasse.

Das erste Moment ist der Erwartungswert. Er wird meist mit bezeichnet und kann als Mittelwert angesehen werden.

Darstellung für reelle Zufallsvariable

Ist eine auf einem Wahrscheinlichkeitsraum definierte reelle Zufallsvariable mit der Verteilungsfunktion , dann folgt aus der Definition des Erwartungswertes

.

Ist eine stetige Zufallsvariable mit der Dichtefunktion , dann gilt

,

und für eine diskrete Zufallsvariable mit den Werten und den zugehörigen Wahrscheinlichkeiten ist

.

Mit Hilfe des Lebesgue-Integrals bezüglich des Wahrscheinlichkeitsmaßes lassen sich diese Fälle einheitlich schreiben als

.

Zentrale Momente

Neben den oben definierten Momenten werden die zentralen Momente definiert, bei denen die Verteilung der Wahrscheinlichkeitsmasse um den Erwartungswert der Zufallsvariablen betrachtet wird:

und

Aus der Definition folgt unmittelbar, dass das erste zentrale Moment immer 0 ist:

Das erste zentrale absolute Moment ist die mittlere absolute Abweichung:

Das zweite zentrale Moment ist die Varianz:

Das dritte zentrale Moment ist nach Normierung die Schiefe (engl. skewness):

Das vierte zentrale Moment ist nach Normierung die Wölbung (engl. kurtosis, Exzess):

Schiefe und Wölbung werden zusammen als höhere Momente bezeichnet. Die Wölbung wird oft als Maß der Abweichung von der Normalverteilung benutzt, die Schiefe ist ein Maß der Abweichung von einer symmetrischen Verteilung.

Momente, charakteristische Funktion und Kumulanten

Durch mehrfaches Ableiten der Formel für die charakteristische Funktion erhält man eine Darstellung der gewöhnlichen Momente durch die charakteristische Funktion als

Das -te Moment kann auch mit der momenterzeugenden Funktion ermittelt werden. Außerdem ist es möglich, das k-te Moment als Polynom k-ten Grades aus den ersten k Kumulanten darzustellen. Dieses Polynom ist dann genau das k-te vollständige Bell-Polynom :

.

Markow-Ungleichung

Die Bedeutung der Momente wird durch folgenden Satz deutlich:

Wenn das -te absolute Moment der Zufallsvariablen existiert, dann gilt

.

Das ist die Markow-Ungleichung, die eine Aussage über die Wahrscheinlichkeit betragsmäßig großer Werte von liefert. Im Spezialfall folgt daraus mit der Varianz von die bekannte Tschebyschow-Ungleichung

,

die eine Aussage über die Wahrscheinlichkeit großer Abweichungen der Zufallsvariablen von ihrem Erwartungswert macht.

Verbundmomente

Der Momentenbegriff lässt sich auch auf mehrere Zufallsvariablen erweitern. Im Falle zweier Zufallsvariablen und sind die gemeinsamen Momente (engl. joint moments) von und

mit der gemeinsamen Dichte .

Analog werden die zentralen gemeinsamen Momente von und als

definiert. Insbesondere ist die Kovarianz von und .

Siehe auch

Literatur

  • Athanasios Papoulis, S. Unnikrishna Pillai: Probability, Random Variables, and Stochastic Processes. McGraw-Hill Publishing Co.; 4Rev Ed edition (2002), ISBN 0-07-366011-6.

Einzelnachweise

  1. L. Schmetterer: Mathematische Statistik. Springer, Wien 1966, S. 61.
Dieser Artikel basiert ursprünglich auf dem Artikel Moment (Stochastik) aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.