Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Äquivokation

Aus Jewiki
Zur Navigation springen Zur Suche springen
Dieser Artikel behandelt die Äquivokation in der Informationstheorie. Zur Verwendung des Terminus in der Semantik siehe Homonym.

Äquivokation (von lateinisch aequus ,gleich‘ und vocare ,rufen‘) ist die Information, die bei der Übertragung über einen Kanal zwischen einer Informationsquelle (Sender) und einer Informationssenke (Empfänger) verloren geht. Der Terminus ist in diesem Zusammenhang als Informationsgehalt zu verstehen und geht auf die Informationstheorie von Claude Shannon zurück, welcher die Grundlagen für diese in den 1940er Jahren legte.
Der abstrakte Begriff eines „Informationskanals“ kann sich in praktischen Realisierungen über den Ort (z. B. eine Nachrichtenverbindung zwischen zwei Punkten; → PTP) oder über die Zeit (z. B. in Form eines Datenspeichers) erstrecken.

Definition

Modell eines Kanals mit Quelle H(X) und Senke H(Y) und der Äquivokation H(X|Y)

Die mathematische Definition des Informationsgehalts ist eng an die Entropiefunktion gekoppelt, wobei die Zufallsvariable die Menge aller möglichen Symbole im Übertragungskanal beschreibt. Eine Informationsquelle sendet nun, wie in rechter Abbildung dargestellt, über einen Kanal zur Informationssenke welche empfängt. kann zu zufolge einer am Kanal eingebrachten Fehlinformation bzw. zufolge der am Kanal auftretenden Äquivokation unterschiedlich sein. Die Schreibweise steht für die bedingte Entropie mit den beiden Zufallsvariablen .

Als bedingte Entropiefunktion lässt sich die Äquivokation, mit der Transinformation zwischen Quelle und Senke, ausdrücken als:

Als eine Wahrscheinlichkeitsfunktion lässt sich die Äquivokation mit dem Logarithmus zur Basis 2 ausdrücken als:

Quellen

  • Jürgen Lindner: Informationsübertragung. Springer Verlag, Berlin Heidelberg 2005, ISBN 3-540-21400-3, S. 313.
Dieser Artikel basiert ursprünglich auf dem Artikel Äquivokation aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.