Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Eichboson

Aus Jewiki
Zur Navigation springen Zur Suche springen

Eichbosonen sind in der Elementarteilchenphysik die Teilchen, die die Grundkräfte vermitteln. Dies geschieht, indem Eichbosonen von einem Teilchen ausgesandt und von einem anderen empfangen werden. Deshalb werden sie auch als Austauschbosonen, Austauschteilchen, Botenteilchen, Trägerteilchen, Kraftteilchen oder Wechselwirkungsteilchen bezeichnet.

Die Elementarteilchen im Standardmodell
Violett: Quarks
Grün: Leptonen
Rot: Austauschteilchen
Gelb: Higgs-Boson

Standardmodell

Fordert man von einer Feldtheorie, dass ihre Wirkung unabhängig von einer lokalen Eichung sein soll, so muss gegebenenfalls ein zusätzliches Eichfeld eingeführt werden, sodass die Lagrangedichte der Theorie diese Bedingung erfüllt. Bei der Quantisierung, also beim Übergang zu einer Quantenfeldtheorie, entsprechen die Eichbosonen den Feldquanten des Eichfelds.[1][2] Ihnen ist gemein, dass sie ganzzahligen Spin besitzen, deshalb die Spezifizierung Bosonen. Der Spin aller Eichbosonen des Standardmodells hat den Betrag 1. Sie sind also Vektorteilchen.

Das Photon ist das bekannteste Eichboson. Es vermittelt die elektromagnetische Wechselwirkung. Die anderen Eichbosonen des Standardmodells sind die acht Gluonen der starken Wechselwirkung sowie die W±-Bosonen und Z-Bosonen der schwachen Kernkraft.

Eichboson(en) Anzahl Wechselwirkung Materieteilchen Eichgruppe
Gluonen 8 starke Wechselwirkung Quarks SU(3)
W+-, W- und Z0-Boson 3 schwache Wechselwirkung Quarks, Leptonen SU(2)
Photon 1 elektromagnetische Wechselwirkung Quarks, Leptonen (ohne Neutrinos) U(1)

Multiplizität

In einer quantisierten Eichtheorie sind Eichbosonen Quanten der Eichfelder. Es gibt so viele Eichbosonen wie Generatoren der Eichgruppe. In der Quantenelektrodynamik ist die Eichgruppe U(1) eindimensional, also gibt es nur ein Eichboson. Die Eichgruppe der Quantenchromodynamik, SU(3), hat acht Generatoren, entsprechend gibt es acht Gluonen. Der vereinheitlichten Theorie der elektroschwachen Wechselwirkung (GSW) liegt die Gruppe SU(2) × U(1) zugrunde, dies führt letztlich zu den 4 Eichbosonen Photon, W+-, W- und Z0-Boson.

Eichbosonen sind adjungierte Darstellungen der zugrundeliegenden Symmetriegruppe. Für die SU(N)-Gruppen des Standardmodells ist diese Darstellung (N2−1)-dimensional. Deshalb gibt es 8 Gluonen und 4 (= 3+1) Eichbosonen der elektroschwachen Theorie.[1]

Masse

Die Eichinvarianzbedingung fordert, dass alle Eichbosonen masselos sind, da ein Masseterm in der Lagrangefunktion nicht eichinvariant ist. Die W+−- und Z-Bosonen besitzen jedoch Masse. Dies ist ein Effekt des Higgs-Mechanismus, durch den die SU(2)×U(1)-Symmetrie der elektroschwachen Wechselwirkung spontan gebrochen wird. Gemessen werden nicht die ursprünglichen SU(2)×U(1)-Eichbosonen, sondern Linearkombinationen hiervon. Das damit verbundene Higgs-Teilchen ist das einzige experimentell noch nicht bestätigte Teilchen des Standardmodells der Elementarteilchenphysik. Der experimentelle Nachweis ist eine Hauptaufgabe des Large Hadron Colliders (LHC). Am 4. Juli 2012 wurde durch das CERN die Entdeckung eines Bosons mit einer Masse von etwa 125 GeV/c² bekannt gegeben, bei dem es sich um das Higgs-Teilchen handeln könnte.[3]

Jenseits des Standardmodells

Viele Theorien, die über das Standardmodell der Elementarteilchenphysik hinausgehen, führen neue Wechselwirkungen ein, und somit auch neue Eichbosonen. Bisher wurde jedoch noch keines dieser Teilchen in einem Experiment gemessen. Genaugenommen ist auch das Graviton so ein hypothetisches Teilchen, da noch keine Quantengravitationstheorie durch Experimente bestätigt wurde.

Große Vereinheitlichte Theorie

In Großen Vereinheitlichten Theorien (GUTs) werden zusätzliche Eichbosonen als X und Y vorhergesagt. Diese würden Wechselwirkungen zwischen Quarks und Leptonen vermitteln, damit die Erhaltung der Baryonenzahl verletzen und könnten so einen Protonenzerfall verursachen. Diese Bosonen wären durch Symmetriebrechung äußerst massiv (sogar noch schwerer als die W- und Z-Bosonen), ihre Spins 0 oder 1.

Gravitation

Die Gravitationswechselwirkung ist im Gegensatz zu den anderen kein Gegenstand des Standardmodells, ebenso das hypothetische Trägerteilchen, das Graviton. Dieses ist auch deshalb eine Ausnahme, weil es als Spin-2-Teilchen ein Tensorboson ist, was in Übereinstimmung mit der anziehenden Wirkung zwischen Massen (als „Gravitationsladungen“) steht.

W′- und Z′-Bosonen

W′ und Z′ (gelesen: W-prime und Z-prime) sind hypothetische Eichbosonen, die an die Fermionen des Standardmodells vermöge ihres Isospins koppeln. Ihr Spin ist 1.

Durch die Erweiterung des Standardmodells um mindestens eine weitere U(1)-Eichgruppe kann ein Z′-Boson erzeugt werden, allerdings kein W′-Boson. Eine weitere mögliche Erweiterung ist, n SU(2)-Eichgruppen anzunehmen, wobei eine davon die gewöhnlichen W- und Z-Bosonen erzeugt, die anderen n−1 die W′- und Z′-Bosonen.

Supersymmetrische Partner

Die hypothetischen supersymmetrischen Partner der Eichfelder sind die folgenden Gaugino-Felder:

  • acht Gluinos als Superpartner der Gluonen.
  • Die elektroschwachen Gaugino-Felder mischen nach dem minimalen supersymmetrischen Standardmodell (MSSM) mit den Higgsino-Feldern zu zwei Paar elektrisch geladenen Charginos und vier elektrisch neutralen Neutralinos als hypothetisch beobachtbare Teilchen. Die Higgsinos sind die Superpartner der hypothetischen Higgsfelder, von denen es im MSSM mehrere gibt.
  • ein Gravitino als supersymmetrischer Partner des Gravitons nach der Theorie der Supergravitation (SUGRA) kein Bestandteil des MSSM, so wie das Graviton kein Teil des SM ist.

Literatur

Eichbosonen werden in den meisten einführenden Büchern über moderne Elementarteilchenphysik behandelt. Beispielhaft seien hier genannt:

  • David J. Griffiths: Introduction to Elementary Particles. Wiley, John & Sons, Inc 1987, ISBN 0-471-60386-4 (Englisch). Für Physikstudenten in den mittleren Semestern und interessierte Laien.
  • Michael E. Peskin, Daniel V. Schroeder: An Introduction to Quantum Fields. Westview Press 1995, ISBN 0-201-50397-2 (Englisch). Für Physikstudenten mit einem Hang zu Theoretischer Physik (Kurs in Quantenfeldtheorie, erst im dritten Teil werden Eichtheorien behandelt).
  • Klaus Bethge, Ulrich E. Schröder: Elementarteilchen und ihre Wechselwirkungen – eine Übersicht. WILEY-VCH, Weinheim 2006, ISBN 3-527-40587-9.
  • Harald Fritzsch: Elementarteilchen. Bausteine der Materie. Beck, München 2004, ISBN 3-406-50846-4.
  • Henning Genz: Elementarteilchen. Fischer, Frankfurt a.M. 2003, ISBN 3-596-15354-9.

Weblinks

  • Particle Data Group ist die Standardreferenz zu aktuellen experimentellen Befunden in Bezug auf Elementarteilchen.

Einzelnachweise

  1. 1,0 1,1 Michael E. Peskin, Daniel V. Schroeder: An Introduction to Quantum Fields. Westview Press 1995, ISBN 0-201-50397-2
  2. David J. Griffiths: Introduction to Elementary Particles. Wiley, John & Sons, Inc 1987, ISBN 0-471-60386-4
  3. CERN experiments observe particle consistent with long-sought Higgs boson. Pressemitteilung von CERN. 4. Juli 2012. Abgerufen am 28. November 2015.
Dieser Artikel basiert ursprünglich auf dem Artikel Eichboson aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.