Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Gleichgewichtsorgan
Ein Gleichgewichtsorgan dient Lebewesen zur Wahrnehmung von Beschleunigungen und zur Bestimmung der Richtung der Erdanziehungskraft. Der Reiz wird meist über Sinneszellen aufgenommen, die an einen oder – wie beim Menschen – mehrere speziell aufgehängte oder aufliegende Festkörper gekoppelt sind, so genannte Statolithen. Im Falle von Drehbewegungen dient häufig eine Flüssigkeit in einem Röhrensystem als träge Masse. Bei allen Wirbeltieren einschließlich des Menschen ist der Vestibularapparat das wichtigste Gleichgewichtsorgan.
Der Vestibularapparat im Allgemeinen
Das paarige Vestibularorgan (Organon vestibulare, Vestibularapparat) der Wirbeltiere und des Menschen befindet sich im Innenohr. Es unterteilt sich meist in jeweils fünf Bestandteile: Drei Bogengänge und die beiden als Maculaorgane bezeichneten Strukturen Sacculus und Utriculus. Fische und Amphibien besitzen als zusätzlichen sechsten Bestandteil eine Lagena, die ebenfalls ein Maculaorgan ist. Auch bei der Anzahl der Bogengänge gibt es Ausnahmen, allerdings nur bei sehr ursprünglichen Wirbeltieren. Neunaugen haben nur zwei Paar Bogengänge, Schleimaale gar nur ein Paar[1].
Der Vestibularapparat des Menschen
Die mit Endolymphe gefüllten Bogengänge bilden das Drehsinnorgan und stehen nahezu senkrecht zueinander und erfassen so die Drehbeschleunigungen des Kopfes im Raum. Sie bestehen jeweils aus dem eigentlichen Bogen und aus einer Erweiterung, der Ampulle. In ihr liegen die Haarzellen der Bogengänge, die Sinneszellen des Gleichgewichtsorgans. Deren Spitzen ragen in einen Gallertkegel, die Cupula. Bei einer Drehung des Kopfes strömt die Endolymphe wegen ihrer Trägheit entgegen der Drehrichtung durch die Bogengänge. Dadurch werden die Cupula und die in ihr liegenden Sinneshaarzellen gebogen und somit erregt und ein elektrisches Signal gelangt über den Bogengangnerv zum Gehirn.
Sacculus und Utriculus erfassen die translatorische Beschleunigung des Körpers im Raum. Sie stehen ebenfalls senkrecht zueinander, sodass der Sacculus auf vertikale und der Utriculus auf horizontale Beschleunigungen anspricht. Die Sinneszellen ragen mit ihren Fortsätzen (Sinneshärchen, vor allem Stereozilien) in eine gallertige Membran, die Otolithen enthält. Otolithen sind feine Kalziumkarbonatkristalle, welche die Dichte der Membran erhöhen und damit wiederum einen Trägheitseffekt ermöglichen, sodass die Erfassung linearer Beschleunigungen überhaupt ermöglicht wird.
Von den Sinneszellen gelangt die Sinnesinformation über den VIII. Hirnnerv (Nervus vestibulocochlearis) zu entsprechenden Nervenkernen im Hirnstamm (Vestibulariskerne). Diese erhalten zusätzliche Informationen von den Augen, vom Kleinhirn und vom Rückenmark.
Die Verschaltung des Gleichgewichtsorgans mit den Augenmuskeln (Vestibulookulärer Reflex) ermöglicht die visuelle Wahrnehmung eines stabilen Bildes während gleichzeitiger Kopfbewegungen.
Für die bewusste Orientierung im Raum sind neben dem Gleichgewichtssystem (vestibuläres System) auch das visuelle System und das propriozeptive System (Tiefensensibilität) verantwortlich.
Ist die Funktion eines dieser Systeme gestört, kann dies widersprüchliche Informationen aus den einzelnen Sinnesorganen zur Folge haben. Dies kann zu einem Schwindelanfall führen. Funktionsstörungen der Otolithen können den gutartigen Lagerungsschwindel hervorrufen.
Neuere Untersuchungen zeigen, dass das Gleichgewichtsorgan im Innenohr nicht nur für die Orientierung im Raum zuständig ist: Eine weitere wichtige Rolle spielt es bei der präzisen Steuerung der Körperbewegungen. Insbesondere bei Bewegungen im Dunkeln oder bei komplexen Bewegungsabfolgen, wie sie etwa Turner oder Artisten ausführen, scheint diese Funktion eine wichtige Rolle zu spielen.[2]
Gleichgewichtsprüfung
Koordinationsprüfungen
- Romberg-Versuch: Der Untersuchte steht bei geschlossenen Augen so, dass die Füße sich innen berühren. Die Arme werden horizontal vorgestreckt. Der Untersucher beurteilt sicheren Stand oder Fallneigung des Probanden.
- Unterberger-Tretversuch: Der Untersuchte marschiert mit geschlossenen Augen „auf einer Stelle“, ggf. mit den Armen nach vorne gestreckt. Der Untersucher beurteilt Fallneigung zur Seite oder nach hinten.
- Gangabweichung: Beim Gehen mit geschlossenen Augen nach vorne wird die Gangabweichung beurteilt.
- Berg Balance Scale, ein Testverfahren, in dem das Gleichgewichtsverhalten und die „Sturzgefährdung" anhand von 14 Tests festgestellt wird.
Experimentelle Prüfungen
- Kalorische Prüfung des Gleichgewichtsorgans: Während der Untersuchung liegt der Patient mit leicht erhöhtem Kopf auf dem Rücken. Damit keine Orientierung im Raum möglich ist, sollten die Augen geschlossen sein. Durch Spülen des Gehörganges mit kaltem oder warmen Wasser (30 °C, 44 °C) kommt es zu einer Bewegung der Endolymphe im Vestibularorgan, die mit Schwindel verbunden ist. Bei intaktem Vestibularorgan lässt sich ein Nystagmus, also ein typisches seitliches Zucken des Auges, beobachten und auswerten. In der Regel bewegt sich bei der Warmspülung das Auge in Richtung des gereizten Ohres, beim kalten Reiz in die entgegengesetzte Richtung. Sollte das Trommelfell nicht intakt sein, darf nicht mit Wasser gespült werden. Ersatzweise kann der Versuch mit Diethylether oder mit Luft durchgeführt werden.
Der Vestibularapparat der Fische und Amphibien
Neben den Bogengängen besitzen alle Fische drei Makulaorgane, die alle je einen Otolithen enthalten[3]. Dabei dient insbesondere der Sacculus dem Hörsinn, wobei die Dichteunterschiede zwischen Sagitta und der umgebenden Endolymphe bei Schallwellen im Nahfeld zu Scherbewegungen an den Haarzellen führen. Zur Ausweitung des Hörsinns auf größere Entfernungen und höhere Frequenzen besitzen einige Knochenfischarten spezielle Kopplungsmechanismen zwischen ihrer Schwimmblase und dem Schädelknochen beziehungsweise ihrem Innenohr. In wenigen Fällen ist das Innenohr mit speziellen luftgefüllten Blasen umgeben.
Maculaorgan | Name des Otolithen | Funktion | Variabilität | relative Größe |
---|---|---|---|---|
Utriculus | Lapillus | Erfassung horizontaler Linearbeschleunigungen | gering | meist klein |
Sacculus | Sagitta | Erfassung vertikaler Linearbeschleunigungen | groß, bei nicht zu den Ostariophysi gehörenden Knochenfischen | groß, extrem groß (über 30 mm) bei Umberfischen |
Lagena | Asteriscus | Hören und Erfassung vertikaler Linearbeschleunigungen | groß, besonders bei den Ostariophysi | mittel |
Auch Amphibien besitzen noch eine Lagena, die jedoch ausschließlich Beschleunigungen wahrnimmt. Soweit bisher bekannt, dient bei diesen Tieren der Sacculus nur zur Wahrnehmung von Substratvibrationen, während die Papilla amphibiorum außerdem auch Schall aufnehmen kann und die Papilla basilaris ausschließlich dem Hören dient [4].
Andere Gleichgewichtsorgane
Die Gleichgewichtsorgane der Vögel
Vögel besitzen sogar mehrere voneinander unabhängige Gleichgewichtsorgane. Sie besitzen ein zweites Gleichgewichtsorgan in seitlichen Auslappungen des Rückenmarks. Es ist allein für die Kontrolle des Gehens und Stehens verantwortlich. Der Vestibularapparat im Innenohr steuert hingegen die Bewegungen der Vögel im Flug.
Die Gleichgewichtsorgane der Insekten
Von Insekten ist eine Vielzahl an Organen beschrieben worden, die vermutlich oder nachgewiesenermaßen als Gleichgewichtsorgan dienen[5]:
- das Grabersche Organ im Hinterleib von Bremsenlarven,
- das Palmensche Organ im Kopf von Eintagsfliegen (statischer Sinn bei Larven nachgewiesen) und
- die Statozysten am 10. und 11. Hinterleibssegment der Larven einer Faltenmücke.
Andere Tiere
Im Tierreich weit verbreitet sind Gleichgewichtsorgane mit einem kinetisch frei beweglichen Festkörper, einem Statolithen, der aus körpereigenem Material besteht und durch Biomineralisation innerhalb des Körpers entstanden ist oder von außen aufgenommen wurde. Solche Organe werden meist als Statozysten bezeichnet und finden sich beispielsweise bei:
- Rippenquallen,
- Planarien,
- Weichtieren,
- einigen Ringelwürmern und
- einigen Krebstieren.
Da sich die Statolithen bei Flusskrebsen in Gruben an der Basis des ersten Fühlerpaars befinden, gehen sie bei der Häutung verloren und müssen von den Tieren durch ein Steinchen aus der Umgebung ersetzt werden. Diese Tatsache war die Grundlage für Experimente, in denen den Krebsen nach der Häutung ausschließlich Eisenkörnchen zur Verfügung gestellt wurden. Der statische Sinn ließ sich dadurch mit Hilfe künstlicher Magnetfelder stören und gezielt untersuchen.
Unterstützende Organe
Die Halteren der Zweiflügler ermöglichen, Geschwindigkeit und Beschleunigungen im Flug festzustellen (in ganz anderer Bauweise aber im Ergebnis einem Gyroskop entsprechend).[6][7]
Literatur
- ↑ Platt C & Popper AN (1981): Fine structure and function of the ear. Pages 1-36 in Tavaloga WN, Popper AN, Fay RR (eds.): Hearing and sound communication in fishes. Springer, New York.
- ↑ Brian Day, Raymond Reynolds: Vestibular reafference shapes voluntary movement. Current Biology 15 (2005) 1390-1394, PMID 16085491
- ↑ Popper AN (1983): Organization of the inner ear and auditory processing. Pages 126-178 in Northcutt RG & and Davis RE (eds.): Fish Neurobiology, Vol. 1, Brain stem and sense organs. The University of Michigan Press. Ann Arbor.
- ↑ http://edoc.ub.uni-muenchen.de/archive/00000042/01/Holler_Stefan.pdf
- ↑ Gattermann R (Hrsg.): Wörterbuch zur Verhaltensbiologie der Tiere und des Menschen. Elsevier, 2006 (2. Auflage), ISBN 3-8274-1703-1
- ↑ Pringle, John William Sutton: The gyroscopic mechanism of the halteres of Diptera. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1948): 347–384.
- ↑ Hengstenberg, Roland: Biological sensors: Controlling the fly's gyroscopes. Nature, Band 392, Nr. 6678, 1998, S. 757–758.
Siehe auch
- Gleichgewichtssinn
- Bogengänge
- Nystagmus
- Vestibulär evozierte myogene Potentiale
- Inertiales Navigationssystem
Weblinks
- www.wissenschaft.de:Gleichgewichtsorgan im Innenohr koordiniert komplexe motorische Abfolgen Bild der Wissenschaft
Dieser Artikel basiert ursprünglich auf dem Artikel Gleichgewichtsorgan aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |