Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Kreiswinkel

Aus Jewiki
Zur Navigation springen Zur Suche springen

Für viele Fragestellungen der Elementargeometrie, bei denen es um Winkel an Kreisen geht, lassen sich die im Folgenden erklärten Begriffe und Aussagen verwenden.

Begriffe

Verbindet man die voneinander verschiedenen Endpunkte A und B eines Kreisbogens mit seinem Mittelpunkt M und einem Punkt P auf dem Kreisbogen, so liegen folgende Winkel vor:

  • Umfangswinkel oder Peripheriewinkel (Φ) nennt man einen Winkel , dessen Scheitel P auf demjenigen Kreisbogen liegt, der den gegebenen Kreisbogen über [AB] zum vollständigen Kreis (dem Umkreis des Dreiecks ABP) ergänzt.
  • Mittelpunktswinkel (μ): Ist M der Mittelpunkt des gegebenen Kreisbogens, so bezeichnet man den Winkel als den zugehörigen Mittelpunktswinkel (Zentriwinkel).
  • Ein Sehnentangentenwinkel (τ) zum gegebenen Kreisbogen wird begrenzt von der Sehne [AB] und der Kreistangente im Punkt A bzw. B.

Viele Autoren von Geometrie-Lehrbüchern nehmen bei Umfangswinkeln, Mittelpunktswinkeln und Sehnentangentenwinkeln nicht Bezug auf einen gegebenen Kreisbogen, sondern auf eine gegebene Kreissehne [AB]. Legt man eine solche Definition zugrunde, so muss man zwei Arten von Umfangswinkeln unterscheiden, nämlich spitze und stumpfe Umfangswinkel. Als Mittelpunktswinkel definiert man in diesem Fall den kleineren der beiden Winkel, die von den Kreisradien [MA] und [MB] eingeschlossen werden. Die Formulierung der Sätze im nächsten Abschnitt muss bei Verwendung dieser Definition ein wenig variiert werden.

Umfangs-, Mittelpunkts- und Sehnentangentenwinkel

Kreiswinkelsatz (Zentriwinkelsatz)

Der Mittelpunktswinkel (Zentriwinkel) eines Kreisbogens ist doppelt so groß wie einer der zugehörigen Umfangswinkel (Peripheriewinkel).

Skizze zum Kreiswinkelsatz
Satz des Thales

Der Beweis dieser Aussage ist in dem links skizzierten Spezialfall besonders einfach. Die beiden Winkel bei B und P sind als Basiswinkel in dem gleichschenkligen Dreieck MBP gleich groß. Der dritte Winkel des Dreiecks MBP (mit dem Scheitel M) hat die Größe . Der Satz über die Winkelsumme ergibt folglich und weiter, wie behauptet, .

Im allgemeinen Fall liegt M nicht auf einem Schenkel des Umfangswinkels. Die Gerade PM teilt dann Umfangswinkel und Mittelpunktswinkel in zwei Winkel ( und bzw. und ), für die jeweils einzeln die Aussage gilt, da die Voraussetzungen des bewiesenen Spezialfalls erfüllt sind. Deshalb gilt die Aussage auch für den gesamten Umfangswinkel und den gesamten Mittelpunktswinkel . Außerdem ermöglicht die Gültigkeit des Peripheriewinkelsatzes (siehe unten) eine Überführung des allgemeinen Falles in den Spezialfall, ohne die Allgemeinheit des bereits für den Spezialfall erbrachten Beweises einzuschränken.

Weiterer Beweis im Wikibooks-Beweisarchiv

Ein besonders wichtiger Sonderfall liegt vor, wenn der gegebene Kreisbogen ein Halbkreis ist: In diesem Fall ist der Mittelpunktswinkel gleich 180° (ein gestreckter Winkel), während die Umfangswinkel gleich 90°, also rechte Winkel sind. Damit erweist sich der Satz des Thales als Spezialfall des Kreiswinkelsatzes.

Umfangswinkelsatz (Peripheriewinkelsatz)

Alle Umfangswinkel (Peripheriewinkel) über einem Kreisbogen sind gleich groß. Dieser Kreisbogen heißt dann Fasskreisbogen.

Der Umfangswinkelsatz ist eine unmittelbare Konsequenz des Kreiswinkelsatzes: Jeder Umfangswinkel ist nach dem Kreiswinkelsatz halb so groß wie der Mittelpunktswinkel (Zentriwinkel). Also müssen alle Umfangswinkel gleich groß sein.

Allerdings ist es unter Umständen notwendig, den Peripheriewinkelsatz auf anderem Wege zu beweisen, da er sonst nicht als Bedingung in der Beweisführung des Kreiswinkelsatzes verwendbar ist.

Sehnentangentenwinkelsatz

Sehnentangentenwinkel

Die beiden Sehnentangentenwinkel eines Kreisbogens sind so groß wie die zugehörigen Umfangswinkel (Peripheriewinkel) und halb so groß wie der zugehörige Mittelpunktswinkel (Zentriwinkel).

Beweis siehe unter Weblinks

Anwendung bei Konstruktionsaufgaben

Umfangswinkelsatz

Insbesondere der Umfangswinkelsatz lässt sich nicht selten für geometrische Konstruktionen verwenden. In vielen Fällen sucht man die Menge (den geometrischen Ort) aller Punkte P, von denen aus eine gegebene Strecke (hier [AB]) unter einem bestimmten Winkel erscheint. Die gesuchte Punktmenge besteht im Allgemeinen aus zwei Kreisbögen, den sogenannten Fasskreisbögen (Bild 1).

 

Bild 1: Skizze zum Fasskreisbogenpaar

Zentriwinkelsatz

Der Zentriwinkelsatz eignet sich auch als Konstruktionsbaustein zur Lösung z. B. folgender Aufgaben:

  • Es ist aus einer vorgegebenen Seitenlänge ein Polygon zu konstruieren, das die doppelte Anzahl Ecken eines Polygons mit gleicher Seitenlänge hat (Bild 2).
  • Zeichne ein Vierzigeck bei dem die Seitenlänge gegeben ist.
Hierfür wird zuerst der Umkreis eines Zehnecks mit nur einer Seitenlänge konstruiert und anschließend zweimal hintereinander der Zentriwinkelsatz angewendet.
  • Es ist aus einer vorgegebenen Seitenlänge ein Polygon zu konstruieren, das die halbe Anzahl Ecken eines Polygons mit gleicher Seitenlänge hat (Bild 3).

 

01-Zentriwinkelsatz-Anwendung.svg 01-Zentriwinkelsatz-Anwendung-2.svg
Bild 2: Zentriwinkelsatz
Konstruktion eines Polygons bei gegebener Seitenlänge ,
das die doppelte Anzahl Ecken eines Polygons mit gleicher Seitenlänge hat.
Beispiel:
Die Seitenlänge des gesuchten Zwanzigecks (blau) ist
gleich der des vorgegebenen Zehnecks.
Bild 3: Zentriwinkelsatz, ist die Mittelsenkrechte von
Konstruktion eines Polygons bei gegebener Seitenlänge ,
das die halbe Anzahl Ecken eines Polygons mit gleicher Seitenlänge hat.
Beispiel:
Die Seitenlänge des gesuchten Zehnecks (blau) ist
gleich der des vorgegebenen Zwanzigecks.

Weblinks

Wikibooks Wikibooks: Kreiswinkelsatz – Lern- und Lehrmaterialien
Wikibooks Wikibooks: Sehnentangentenwinkelsatz – Lern- und Lehrmaterialien

Literatur

Dieser Artikel basiert ursprünglich auf dem Artikel Kreiswinkel aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.