Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Plastid
Übergeordnet | ||
Organell | ||
Untergeordnet | ||
Chloroplast Amyloplast Chromoplast Etioplast Leukoplasten Elaioplast Proteinoplast Apicoplast (Apikoplast) Gerontoplast Cyanelle (Cyanoplast, Muroplast) Proplastid Rhodoplast Phaeoplast Chromatophor[1][2] Kleptoplastid | ||
Gene Ontology | ||
---|---|---|
QuickGO |
Plastiden (von altgriechisch πλαστός plastós „geformt“) sind die in Pflanzen und Algen vorkommenden besonderen Zellorganellen, die aus endosymbiontisch lebenden Zellen hervorgegangen sind und unter anderem für die Photosynthese gebraucht werden.
Bau
Ein Plastid verfügt über ein eigenes ringförmiges Genom – dieses plastidäre Genom wird auch Plastom genannt – und eigene Ribosomen, Plastoribosomen genannt, die in seine plasmatische Grundsubstanz (Stroma) eingebettet sind. Darüber hinaus liegen weitere plastidenspezifische Komponenten für die plastidäre Replikation, Transkription und Translation vor.
Nach den sie umhüllenden Membranen unterscheidet man einfache Plastiden, die auf ein primäres Endosymbioseereignis zurückzuführen sind und von zwei Hüllmembranen umgeben sind, und komplexe Plastiden, die durch sekundäre oder tertiäre Endosymbiose entstanden und so drei oder vier Hüllmembranen besitzen. Kommen in einer Zelle mehrere Plastiden vor, so sind diese meist über Stromuli miteinander verbunden.
Evolution

Die einfachen Plastiden der Glaucocystophyceen, Rotalgen, Grünalgen (Chlorophyta) und Landpflanzen (Embryophyta) stammen wahrscheinlich aus einer primären Endosymbiose. Sie sind monophyletisch, d. h. die drei Algengruppen und die Landpflanzen (Embryophyta) stammen von einem gemeinsamen einzelligen Vorfahren ab, dessen Nachkommen sich in drei Evolutionslinien aufspalteten:
- Die Plastiden der Glaucocystophyceen werden Cyanellen (auch Cyanoplasten oder Muroplasten) genannt, verwenden als Lichtsammelkomplexe Phycobilisomen und sind noch von einem Rest einer bakteriellen Zellwand umgeben.
- Die Plastiden der Rotalgen heißen Rhodoplasten, enthalten ebenfalls noch Phycobilisomen, jedoch keine bakterielle Zellwand mehr.
- Die Chloroplasten der Grünalgen und höheren Pflanzen bilden keine Phycobilisomen mehr, enthalten Chlorophyll b und bilden Stärke im Plastiden.
- Die Plastiden der Braunalgen nennt man auch Phaeoplasten.
Auch die Plastiden der amöboiden Paulinella chromatophora (Euglyphida, s. u.), Chromatophoren genannt, sind offenbar primäre Chloroplasten. P. chromatophora stammt offenbar von einem Vorfahren ab, der unabhängig und viel später ein Cyanobakterium der Gattung Prochlorococcus (oder Synechococcus) aufgenommen hatte.[3][4][5][6]
Bei den Gefäßpflanzen unterscheidet man neben den (photosynthetisch aktiven) Chloroplasten weitere Typen von Plastiden: die Gerontoplasten und Etioplasten als Entwicklungen der Chloroplasten, sowie den Chromoplasten und den Leukoplasten, aus dem Amyloplasten, Elaioplasten und Proteinoplasten hervorgehen können. Proplastid wird jener Vorläufertyp genannt, aus dem sich die Plastiden entwickeln können.
Die übrigen Algen aus den Evolutionslinien der Stramenopilen, Haptophyta, Cryptophyceae, Chlorarachniophyta und Euglenozoa bilden komplexe Plastiden. Die Wirtszellen sind nicht mit den obengenannten der Plantae (Rotalgen, Grünalgen, sog. höhere Pflanzen und vermutlich auch Glaucocystophyceen) verwandt, jedoch ihre Plastiden, die höchstwahrscheinlich aus sekundären Endosymbiosen herstammen.
Die photosynthetisch aktiven Vertreter der Euglenozoa (= Euglenida) und die Chlorarachniophyta erhielten ihre Plastiden durch Aufnahme einer Grünalge, enthalten also komplexe Chloroplasten, alle übrigen sind auf Rotalgen zurückzuführen, also komplexe Rhodoplasten. Bei Dinoflagellaten finden sich verschiedene Endosymbiose-Ereignisse von sekundären Endosymbiosen mit Rotalgen, tertiären Endosymbiosen mit Haptophyceen und Cryptophyceen bis zu instabilen Kleptoplastiden, die wieder verdaut werden.
Seit den 1990er-Jahren hat man plastidenähnliche Zellorganellen auch in verschiedenen Protozoen, den Apicomplexa, gefunden. Über die „Apicoplasten“ genannten Zellbestandteile verfügen etwa auch die Malaria-Erreger aus der Gattung Plasmodium. Nach heutigem Stand des Wissens handelt es sich hierbei um komplexe Rhodoplasten.
Teilung
Lange Zeit war unbekannt, wie Plastiden sich teilen und ihre Form verändern. Heute weiß man, dass auch Bakterien ein Zytoskelett besitzen, dessen Proteine evolutionäre Vorläufer des eukaryotischen Zytoskeletts sind. Aus Versuchen am Laubmoos Physcomitrella patens (unter anderem mit Knockout-Moosen) ist bekannt, dass die FtsZ-Proteine, Tubulin-Homologe, nicht nur an der Chloroplasten-Teilung beteiligt sind[7], sondern auch ein komplexes Netzwerk in den Plastiden ausbilden können. Sie erfüllen ähnliche Funktionen wie das Zytoskelett im Cytoplasma.[8][9]
Literatur
- Patrick J. Keeling: The endosymbiotic origin, diversification and fate of plastids. In: Philosophical Transactions of the Royal Society B: Biological Sciences. Band 365, Nr. 1541, 2010, S. 729–748, PMID 20124341, PDF (freier Volltextzugriff, englisch)
Weblinks
- Wilfried Probst: Frühe Evolution und Symbiose, Europa-Universität Flensburg, Institut für Biologie und Sachunterricht und ihre Didaktik: §Plastiden, abgerufen am 19. April 2019
Einzelnachweise
- ↑ : Evolving a photosynthetic organelle. In: BMC Biology. 10, Nr. 1, 2012, S. 35. doi:10.1186/1741-7007-10-35. PMID 22531210. Volltext bei PMC: 3337241.
- ↑ : Endosymbiotic Gene Transfer and Transcriptional Regulation of Transferred Genes in Paulinella chromatophora'. In: Molecular Biology and Evolution. 28, Nr. 1, 2010, S. 407–22. doi:10.1093/molbev/msq209. PMID 20702568.
- ↑ Luis Delaye, Cecilio Valadez-Cano, Bernardo Pérez-Zamorano: How Really Ancient Is Paulinella Chromatophora?. In: PLoS Currents. 2016. doi:10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b.
- ↑ : Symbiosis in eukaryotic evolution. In: Journal of Theoretical Biology. 434, 2017, S. 20–33. doi:10.1016/j.jtbi.2017.02.031.
- ↑ Early photosynthetic eukaryotes inhabited low-salinity habitats. In: Proceedings of the National Academy of Sciences. 114, Nr. 37, 2017-09-12, S. E7737–E7745. doi:10.1073/pnas.1620089114.
- ↑ W Probst, Europa-Universität Flensburg: §Auf dem Weg zur Chloroplastenbildung
- ↑ René Strepp, Sirkka Scholz, Sven Kruse, Volker Speth, Ralf Reski: Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. In: Proceedings of the National Academy of Sciences. Band 95, 1998, S. 4368–4373 (Abstract).
- ↑ Ralf Reski: Rings and networks: the amazing complexity of FtsZ in chloroplasts. In: Trends in Plant Science. Band 7, 2002, S. 103–105 (Abstract).
- ↑ J. Kiessling, S. Kruse, S. A. Rensing, K. Harter, E. L. Decker, R. Reski: Visualization of a cytoskeleton-like FtsZ network in chloroplasts. In: Journal of Cell Biology. Band 151, 2000, S. 945–950 (Abstract).
Dieser Artikel basiert ursprünglich auf dem Artikel Plastid aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |