Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Endosymbiontentheorie
Die Endosymbiontentheorie (altgriechisch ἔνδον éndon ‚innen‘ und συμβίωσις symbíōsis ‚Zusammenleben‘) besagt, dass Eukaryoten aus einer Endosymbiose prokaryotischer Vorläuferorganismen hervorgegangen sind. Demnach sind chemo- und phototrophe Bakterien von Archaeen aufgenommen worden, in denen sie sich zu Zellorganellen ihrer Wirtszellen entwickelt haben, darunter Mitochondrien und Plastiden. Allerdings gibt es auch Eukaryoten, die weder Zellatmung noch Photosynthese betreiben und keine derartigen Organellen haben, wobei angenommen wird, dass diese Zellbestandteile nachträglich verloren gegangen sind.
Geschichte
Der Gedanke der Endosymbiontentheorie ist erstmals von dem Botaniker Andreas Franz Wilhelm Schimper im Jahr 1883 veröffentlicht worden, der damit die Entstehung der Chloroplasten zu erklären versuchte. Die Hypothese wurde erneut um 1905 von dem russischen Evolutionsbiologen Konstantin Mereschkowski, 1922 von Ivan Wallin[1][2] und 1924 von Boris Koso-Poljanski aufgegriffen. Doch erst 1967 mit der Veröffentlichung von Lynn Margulis wurde sie bekannter.[3][4]
Erläuterung
Die Endosymbiontentheorie geht davon aus, dass Mitochondrien und Plastiden sich aus eigenständigen prokaryotischen Lebewesen entwickelt haben. Im Zuge des Evolutionsprozesses sind diese Einzeller eine Endosymbiose mit einer anderen Zelle eingegangen, das heißt, sie leben in ihrer Wirtszelle zum gegenseitigen Vorteil. Auch heute noch kann man beobachten, dass amöboide Einzeller (also solche mit einer „weichen“ Membran) Cyanobakterien aufnehmen, ohne sie zu verdauen.
Das Zusammenspiel der beiden zellulären Organismen hat sich dann im Verlauf der Evolution zu einer gegenseitigen Abhängigkeit entwickelt, in der keiner der beiden Partner mehr ohne den anderen überleben konnte, das heißt, es entstand eine Symbiose. Diese wird Endosymbiose genannt. Die Abhängigkeit geht so weit, dass die Organellen Teile ihres (nicht mehr benötigten) genetischen Materials verloren haben oder die entsprechenden Gene teilweise in das Kern-Genom integriert wurden. Einzelne Protein-Komplexe in den Organellen, wie z. B. die ATP-Synthase, werden so zum Teil aus kerncodierten, zum Teil aus mitochondrial codierten Untereinheiten zusammengesetzt.
Analysen der Genome deuten darauf hin, dass Plastiden von Cyanobakterien abstammen, während Mitochondrien von aeroben α-Proteobakterien (Rickettsiales) abstammen. Diese Form der Endosymbiose zwischen einem Eukaryoten und einem Bakterium wird als primäre Endosymbiose bezeichnet. Entstand das Zellorganell durch die Aufnahme eines Eukaryoten, der bereits ein primäres Endosymbioseereignis erfahren hat, wird dies als sekundäre Endosymbiose bezeichnet.
Plastiden
Primäre Plastiden sind von zwei Hüllmembranen umgeben, die den beiden Membranen des aufgenommenen Cyanobakteriums entsprechen, während die bei der Phagocytose entstehende darum herumliegende, ursprüngliche dritte Membran nicht mehr vorhanden ist.[5] Insgesamt gibt es vier Linien von primären Plastiden und somit von autotrophen primären Endosymbionten:
- die Glaucophyten-Linie:
die einzelligen Algen der Glaucophyta (syn. Glaucocystaceae) besitzen Plastiden, die dem Cyanobakterium in vielerlei Hinsicht noch sehr ähnlich sind und daher oft als „Cyanellen“ oder „Cyanoplasten“, gelegentlich auch als „Muroplasten“,[6] bezeichnet werden, - die Rhodophyten-Linie:
Rotalgen (wiss. Rhodophyta) besitzen „Rhodoplasten“ genannte Plastiden, die noch den Antennenaufbau (Phycobilisomen) der Cyanobakterien tragen. - der Chloroplastiden-Linie:
Die Plastiden der Viridiplantae (syn. Chloroplastida, Grünalgen und höhere Pflanzen)[7] stellen die am stärksten entwickelten Plastiden dar und tragen eine große Vielfalt an Antennenkomplexen. Die grünen Plastiden der Algen und höheren Pflanzen werden Chloroplasten genannt. - der Paulinella-Linie:
Die Plastiden der amöboiden Paulinella chromatophora (Euglyphida) nennt man Chromatophoren.
Bei all diesen Linien wurden die einst aufgenommenen Cyanobakterien so stark angepasst, dass sie frei nicht mehr lebensfähig sind, und zum Organell, dem Plastiden bzw. Chloroplasten wurden. Dies geschah durch ‚endosymbiotischen Gentransfer‘ (EGT, ein Spezialfall des horizontalen Gentransfers HGT) von Genen des Organells auf den Zellkern. Es wurde lange diskutiert, ob so entstandene primäre Chloroplasten aus einem einzigen endosymbiotischen Ereignis oder aus mehreren unabhängigen Ereignissen in verschiedenen eukaryotischen Abstammungslinien stamme. Es wird heute allgemein angenommen, dass praktisch alle Organismen mit primären Chloroplasten einen einzigen gemeinsamen Vorfahren haben, der aus einer primären Endosymbiose vor etwa 600 Millionen bis 2 Milliarden Jahren entstand.[8][9] Das damals aufgenommene Cyanobakterium stand offenbar nahe der heutigen Spezies Gloeomargarita lithophora, diese befindet basal sich im Stammbaum der Cyanobakterien nahe der Gattung Synechococcus.[10][11][12] Die Alge Cyanophora, ein Glaucophyt, gilt als einer der ursprünglichsten Organismen, die einen Chloroplasten enthalten.[13][14] Die Ausnahme ist Paulinella chromatophora. Diese stammt offenbar von einem Vorfahren ab, der unabhängig davon und viel später – vor etwa 90 bis 500 Millionen Jahren – ein Cyanobakterium der Gattung Prochlorococcus (oder Synechococcus) aufgenommen hatte.[9][15][12][9][16]
Sekundäre Plastiden verfügen über drei oder sogar vier Hüllmembranen. Es ist kein Fall bekannt, in dem eine Aufnahme eines Glaucophyten zu einer sekundären Endosymbiose geführt hätte. Dagegen existiert eine Fülle von Organismengruppen, die eine Rotalge aufgenommen haben und sie in unterschiedlichem Maße reduziert haben. Einige Autoren gehen davon aus, dass dieses Ereignis nur einmal in der Evolution stattgefunden hat, und definieren so das Monophylum der Chromalveolata. In diese Gruppe gehören die Braunalgen, Gelbgrünalgen, Goldalgen, Cryptophyceen, Haptophyceen (Kalkalgen), und die Apicomplexa (z. B. Malaria-Erreger Plasmodium).
Auch sekundäre Endosymbiosen zwischen Eukaryoten und Grün- oder Rotalgen (d. h. primären Endosymbionten) sind bekannt. So wird angenommen, dass die Euglenozoa und die Chlorarachniophyta unabhängig voneinander primäre Endosymbionten in sich aufgenommen haben. Offenbar ist es auch zu tertiären Endosymbiosen gekommen.
Mitochondrien und MROs
Es gibt einige Protozoen („Archezoa“), die keine Mitochondrien (und erst recht keine Plastiden) besitzen. Zunächst wurde angenommen, sie seien primitiv und unmittelbar aus der urtümlichen Wirtszelle der Endosymbionten hervorgegangen. Dies ist vermutlich falsch. Die meisten dieser Organismen besitzen mit den Hydrogenosomen bzw. Mitosomen Organellen, die offenbar entweder von Mitochondrien abstammen oder mit diesen einen gemeinsamen Ursprung in den α-Proteobakterien haben. In einigen Fällen sind sogar noch eigene DNA und Ribosomen vorhanden.[17][18]
Mitochondrien und ähnliche Organellen wie Hydrogenosomen und Mitosomen werden daher zusammen als „mitochondrienverwandte Organellen“ (englisch mitochondrion-related organelles, MROs) klassifiziert. Zu diesen gehören auch die anaeroben und DNA-freien Organellen von Henneguya salminicola (alias H. zschokkei, Myxozoa)[19][20][21]
Eine Ausnahme ist die Gattung Monocercomonoides (Excavata), die keine Organellen aus dieser Gruppe aufweisen. Man nimmt an, dass diese Einzeller durch horizontalen Gentransfer ein zytosolisches System erworben hatten, um für die Proteinsynthese erforderliche Eisen-Schwefel-Cluster bereitzustellen. Danach waren ihre mitochondrialen Organellen in all ihren Funktionen überflüssig und gingen verloren.[22][23] In all diesen Fällen enthält die DNA im Zellkern Sequenzen, die eindeutig mitochondrialen Ursprungs sind. Wahrscheinlich haben alle amitochondrialen Eukaryoten ihre Mitochondrien sekundär verloren oder umgewandelt.
Indizien
- Man kann heute bei unterschiedlichen Lebewesen verschiedene Stadien zwischen Symbiose und Endosymbiose beobachten:
- Korallen, einige Muscheln, der Wurm Convoluta roscoffensis aber zum Beispiel auch Blattläuse leben in Symbiose mit Algen oder Bakterien, die im Zellinneren ihrer Wirte leben. Bei den endosymbiotischen Bakterien der Blattläuse werden Beschleunigungen der Evolutionsraten einhergehend mit Genverlusten und einem Anstieg des AT-Gehaltes der DNA beobachtet, wie sie auch bei Zellorganellen zu finden sind.
- Der Süßwasserpolyp Hydra viridissima (Grüne Hydra) kann durch Endocytose Zoochlorellen aufnehmen und mit deren Hilfe Photosynthese betreiben.
- Manche Acoelomorpha z. B. die Gattung Waminoa leben mit Zooxanthellen in Symbiose und ernähren sich unter anderem von deren Photosyntheseprodukten. Convoluta und auch Symsagittifera (beide Convolutidae) leben in Symbiose mit der einzelligen Grünalge Tetraselmis convolutae.[24]
- Ganz allgemein sind Zooxanthellen Protisten, die als Endosymbionten in einer Reihe von Lebewesen leben können.
- Die Wurzeln einiger Pflanzen leben in Symbiose mit stickstofffixierenden Bakterien (Rhizobien).
- Bei Foraminiferen und Schwämmen kommen Rotalgen als Endosymbionten vor.[24][25]
- Noctiluca scintillans nimmt Grünalgen der Spezies Pedinomonas noctilucae (Pedinophyceae) auf, die im Innern als Endosymbionten weiterleben.[26]
- Bei Dinoflagellaten sind verschiedene Stadien zu finden: Kleptoplastiden, komplexe Rhodoplasten und tertiäre Endosymbiosen, die auf die Aufnahme von Cryptophyceen oder auch Kalkalgen (Haptophyta), eine Gruppe mariner Algen zurückzuführen sind. Nachgewiesen wurde die tertiäre Endosymbiose zwischen Kalkalgen und Dinoflagellaten bei den Arten Gymnodinium breve, Gymnodinium galatheanum und Gyrodinium aureolum.[27]
- Der Pilz Geosiphon pyriforme (syn. G. pyriformis) enthält endosymbiontische Cyanobakterien der Gattung Nostoc.[28]
- Blattläuse (z. B. die Erbsenlaus) können in besonderen Darmzellen (sog. ‚Bakteriozyten‘) endosymbiontische Bakterien der Gattung Buchnera (ggf. auch Regiella, beide Enterobacteriaceae) beherbergen, die über die Eier an die nächste Generation weitergegeben werden. In den Darmzellen von Motten-Schildläusen (Aleyrodoidea) findet man gleich zwei endosymbiontische Bakterien verschachtelt.[29] Bei Schmierläusen der Spezies Planococcus citri wurde sogar eine verschachtelte ‚sekundäre‘ Endosymbiose gefunden.[30]
- Plastiden und Mitochondrien sind von ihrem Aufbau her Prokaryonten: kein Zellkern, ringförmige DNA, die DNA ist nicht durch Histone assoziiert, sondern durch sogenannte HLPs verdichtet (Analogie), Größe entspricht kleinen Bakterien. Sie stellen ihre eigenen Proteine her, wobei sie einen prokaryotischen Proteinbiosyntheseapparat besitzen. Ihre Ribosomen ähneln denen der Bakterien, nicht denen der Wirtszelle (≤ 70-S- anstatt 80-S-Ribosomen). Die mRNA der beiden Organellen besitzt nicht die für Eukaryoten typische 5'-Cap-Sequenz und auch die Polyadenylierung fehlt. Die Cyanellen der Glaucophyta sind sogar noch von einer dünnen bakteriellen Zellwand umgeben. Rotalgen und Glaucophyta setzen wie Cyanobakterien Phycobiline zum Auffangen von Photonen in der Photosynthese ein.
- Die DNA-Sequenzen der Mitochondrien ähneln denen der α-Proteobakterien, während Plastiden-DNA-Sequenzen im Cyanobakterien-Stammbaum platziert werden. Ein Vergleich mit der Wirts-DNA weist auf keine Abstammung der Organellen vom Wirt hin.
- Primäre Plastiden und Mitochondrien sind von Doppelmembranen umgeben, wobei, der Hypothese entsprechend, die äußere beim „Verschlucken“ des Bakteriums hinzugekommen ist. Die innere entspricht der von Bakterien (Vorkommen von Cardiolipin, kein Cholesterin; außerdem Vorkommen von Transmembranproteinen (β-barrel-Proteine), die nur in den Membranen von Bakterien und Zellorganellen vorkommen), die äußere der von Eukaryoten.
- Die besten Belege für sekundäre Endosymbiosen finden sich bei den Chlorarachniophyceen, zu den Cercozoa gehörende Amöben, und den Cryptophyceen, einer eigenständigen Algenklasse. Beide Algengruppen enthalten komplexe Plastiden mit vier Hüllmembranen. Zwischen den beiden äußeren und den beiden inneren Hüllmembranen befindet sich der periplastidäre Raum mit einem Nucleomorph, einem stark reduzierten eukaryotischen Zellkern mit je drei linearen kleinen Chromosomen und eukaryotischen 80-S-Ribosomen. Genomsequenzierungen und phylogenetische Analysen zeigten, dass Nucleomorph und Plastid der Chlorarachniophyceen auf eine sekundäre Endosymbiose mit einer Grünalge, der komplexe Plastid der Cryptophyceen jedoch auf eine sekundäre Endosymbiose mit einer Rotalge zurückzuführen sind. Von der Chlorarachniophycee Bigelowiella natans und von der Cryptophycee Guillardia theta wird/wurde das Nucleomorph-Genom vollständig durchsequenziert. Da bei Rotalgen die Stärkesynthese im Cytoplasma stattfindet und nicht wie bei den Grünalgen und Landpflanzen im Plastiden, spricht das Vorkommen von Stärke im periplastidären Raum der Cryptophyceen ebenfalls für eine sekundäre Endosymbiose.
- Mitochondrien und Plastiden vermehren sich durch Teilung und werden bei Teilung der Wirtszelle auf die Tochterzellen verteilt. Sie entstehen nicht de novo, d. h., sie können von der Zelle bei zufälligem Verlust nicht neu gebildet werden.
- Die membrangebundenen ATPasen der Bakterien und Organellen (wie Mitochondrien) sind untereinander nahe verwandt, genauso wie die der Archaeen und die Eukaryoten-eigenen. Zwischen diesen beiden Gruppen besteht nur eine entferntere Verwandtschaft.[31] Bei kleinen Gruppen von Bakterien und von Archaeen mit den ‚falschen‘ ATPasen vermutet man horizontalen Gentransfer.[32]
Siehe auch
- Chemische Evolution
- Evolutionstheorie
- Kompartimentierungshypothese
- Ektosymbiose, insbes. mikrobielle E.
- Symbiogenese
- Zooxanthelle
- Kappa-Organismen
Literatur
- A. F. W. Schimper: Über die Entwicklung der Chlorophyllkörner und Farbkörper. In: Bot. Z. Band 41, 1883, S. 102–113.
- C. Mereschkowsky: Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. In: Biologisches Centralblatt. Band 25, 1905, S. 593–604.
- Lynn Margulis, Dorion Sagan: Leben: Vom Ursprung zur Vielfalt. Spektrum Akademischer Verlag, Heidelberg/ Berlin 1997, ISBN 3-8274-0524-6 (Übersetzung der englischsprachigen Originalausgabe von 1995).
- Lynn Margulis: Die andere Evolution. Spektrum Akademischer Verlag, Heidelberg/ Berlin 1999, ISBN 3-8274-0294-8 (Übersetzung der englischsprachigen Originalausgabe von 1998).
- J. M. Archibald, M. B. Rogers, M. Toop, K-i. Ishida, P. J. Keeling: Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. In: Proceedings of the National Academy of Sciences of the USA. Band 100, 2003, S. 7678–7683.
- S. E. Douglas, S. Zauner, M. Fraunholz, M. Beaton, S. Penny, L. T. Deng, X. Wu, M. Reith, T. Cavalier-Smith, U.-G. Maier: The highly reduced genome of an enslaved algal nucleus. In: Nature. (London). Band 410, 2001, S. 1040–1041.
- Karl-Heinz Linne von Berg, Michael Melkonian u. a.: Der Kosmos-Algenführer. Die wichtigsten Süßwasseralgen im Mikroskop. Kosmos, Stuttgart 2004, ISBN 3-440-09719-6.
- G. I. McFadden: Primary and secondary endosymbiosis and the origin of plastids. In: Journal of Phycology. Band 37, 2001, S. 951–959.
- S. B. Gould, R. F. Waller, G. I. McFadden: Plastid Evolution. In: Annual Review of Plant Biology. Band 59, 2008, S. 491–517.
- N. A. Moran: Accelerated evolution and Muller's ratchet in endosymbiotic bacteria. In: Proceedings of the National Academy of Sciences of the USA. Band 93, 1996, S. 2873–2878.
- S. Turner, K. M. Pryer, V. P. W. Miao, J. D. Palmer: Investigating deep phylogenetic relationships among Cyanobacteria and plastids by small subunit rRNA sequence analysis. In: Journal of Eukaryotic Microbiology. Band 46, 1999, S. 327–338.
- A. W. Thompson, R. A. Foster u. a.: Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. In: Science. Band 337, Nummer 6101, September 2012, S. 1546–1550. doi:10.1126/science.1222700. PMID 22997339.
- Shinichiro Maruyama, Eunsoo Kim: A Modern Descendant of Early Green Algal Phagotrophs. In: Current Biology. 23, 2013, S. 1081–1084, doi:10.1016/j.cub.2013.04.063.
- William F. Martin, Sriram Garg, Verena Zimorski: Endosymbiotic theories for eukaryote origin. In: Philosophical Transactions of the Royal Society of London B: Biological Sciences. 370, Nr. 1678, 2015-08-31 doi:10.1098/rstb.2014.0330 (http://rstb.royalsocietypublishing.org/content/370/1678/20140330.abstract).
- Wilfried Probst: Frühe Evolution und Symbiose, Europa-Universität Flensburg, Institut für Biologie und Sachunterricht und ihre Didaktik, abgerufen am 19. April 2019
Weblinks
- M. Neukamm, A. Beyer: Die Endosymbiontentheorie: Allgemeine Grundlagen, Fakten, Kritik. 2011. (PDF; 1,2 MB)
- Energiesparen dank Untermieter. Auf: wissenschaft.de vom 14. Oktober 2005, abgerufen am 8. September 2019
- FR Biologie Hannover: Die Endosymbiontentheorie inklusive einer Erklärung zur Hydrogenhypothese als Alternative zur Endosymbiontentheorie.
- Max-Planck-Institut für molekulare Pflanzenphysiologie
Einzelnachweise
- ↑ On the nature of mitochondria. I. Observations on mitochondria staining methods applied to bacteria. II. Reactions of bacteria to chemical treatment. In: American Journal of Anatomy. 30, Nr. 2, 1922, S. 203–229. doi:10.1002/aja.1000300203.
- ↑ On the nature of mitochondria. III. The demonstration of mitochondria by bacteriological methods. IV. A comparative study of the morphogenesis of root-nodule bacteria and chloroplasts. In: American Journal of Anatomy. 30, Nr. 4, 1922, S. 451–471. doi:10.1002/aja.1000300404.
- ↑ Lynn Sagan: On the origin of mitosing cells. In: J. Theoretical Biology. Band 14, Nr. 3, 1967, S. 255–274. PMID 11541392 doi:10.1016/0022-5193(67)90079-3
- ↑ Bernhard Kegel: Die Herrscher der Welt: Wie Mikroben unser Leben bestimmen. DuMont, Köln 2015, ISBN 978-3-8321-9773-5.
- ↑ Thomas Cavalier-Smith: Membrane heredity and early chloroplast evolution. In: trends in plant science. 5, Nr. 4, 2000 S. 174-182.
- ↑ Robert R. Wise (Hrsg.); J. Kenneth Hoober: The structure and function of plastids, S. 3–21, Dordrecht: Springer 2006, ISBN 978-1-4020-4061-0
- ↑ genauer: Chlorophyta und Streptophyta/Charophyta, letztere mit den Landpflanzen, wissenschaftlich Embryophyta
- ↑ : Evolution: Red Algal Genome Affirms a Common Origin of All Plastids. In: Current Biology. 14, Nr. 13, 2004, S. R514–6. doi:10.1016/j.cub.2004.06.041. PMID 15242632.
- ↑ 9,0 9,1 9,2 Early photosynthetic eukaryotes inhabited low-salinity habitats. In: Proceedings of the National Academy of Sciences. 114, Nr. 37, 2017-09-12, S. E7737–E7745. doi:10.1073/pnas.1620089114.
- ↑ : An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. In: Current Biology. 27, Nr. 3, 2017, S. 386–391. doi:10.1016/j.cub.2016.11.056.
- ↑ Jan de Vries: Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?. In: Current Biology. 27, Nr. 3, 2017, S. R103–R105. doi:10.1016/j.cub.2016.12.006.
- ↑ 12,0 12,1 : Symbiosis in eukaryotic evolution. In: Journal of Theoretical Biology. 434, 2017, S. 20–33. doi:10.1016/j.jtbi.2017.02.031.
- ↑ : Chloroplast Origin and Integration. In: Plant Physiology. 125, Nr. 1, 2001, S. 50–3. doi:10.1104/pp.125.1.50. PMID 11154294. Volltext bei PMC: 1539323.
- ↑ : Rates and Patterns of Chloroplast DNA Evolution. In: Proceedings of the National Academy of Sciences. 91, Nr. 15, 1994, S. 6795–6801. doi:10.1073/pnas.91.15.6795. PMID 8041699. Volltext bei PMC: 44285.
- ↑ Luis Delaye, Cecilio Valadez-Cano, Bernardo Pérez-Zamorano: How Really Ancient Is Paulinella Chromatophora?. In: PLoS Currents. 2016. doi:10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b.
- ↑ Wilfried Probst: Frühe Evolution und Symbiose, Europa-Universität Flensburg, Institut für Biologie und Sachunterricht und ihre Didaktik: §Auf dem Weg zur Chloroplastenbildung, abgerufen am 19. April 2019
- ↑ Brigitte Boxma, Rob M. de Graaf, Georg W. M. van der Staay, Theo A. van Alen, Guenola Ricard, Toni Gabaldon, Angela H. A. M. van Hoek, Seung Yeo Moon-van der Staay, Werner J. H. Koopman, Jaap J. van Hellemond, Aloysius G. M. Tielens, Thorsten Friedrich, Marten Veenhuis, Martijn A. Huynen, Johannes H. P. Hackstein: An anaerobic mitochondrion that produces hydrogen. In: Nature. 434, Nr. 7029, 2005-02-03 S. 74–79, doi:10.1038/nature03343.
- ↑ A. Akhmanova, F. Voncken, T. van Alen et al: A hydrogenosome with a genome. In: Nature. 396, Nr. 6711, Dezember 1998, S. 527–528. doi:10.1038/25023. PMID 9859986.
- ↑ Jan Osterkamp: Erstes Tier ohne Atmung und Mitochondrien, auf: Spektrum.de vom 25. Februar 2020
- ↑ Tel Aviv University researchers discover unique non-oxygen breathing animal, auf: EurekAlert! vom 25. Februar 2020
- ↑ Siehe auch: H. nuesslini; Pfauen-Lippfisch§Bedrohungen (H. tunisiensis)
- ↑ : A Eukaryote without a Mitochondrial Organelle. In: Current Biology. 26, Nr. 10, 2016, S. 1274–1284. doi:10.1016/j.cub.2016.03.053. PMID 27185558.
- ↑ Davis, Josh L.: Scientists Shocked to Discover Eukaryote With NO Mitochondria. In: IFL Science. 13. Mai 2016. Abgerufen am 9. April 2019.
- ↑ 24,0 24,1 W. Probst, Europa-Universität Flensburg, §Pflanzentiere und Kleptoplasten
- ↑ W. Reisser (Hrsg.): Algae and Symbiosis: Plants, Animals, Fungi, Viruses, Interactions Explored, Biopress Ltd 1. Mai 1992, Lubrecht & Cramer Ltd 1. Juni 1992, ISBN 0-948737-15-8
- ↑ Aditee Mitra: Meeresbiologie – Das Beste aus zwei Welten, Spektrum der Wissenschaft, April 2019, S. 54–60, hier S. 57
- ↑ Charles F. Delwiche: Tracing the Thread of Plastid Diversity Through the Tapestry of Life. In: The American Naturalist. Vol. 154, Supplement: .Evolutionary Relationships Among Eukaryotes. Okt 1999, S. S164-S177. PMID 10527925. doi:10.1086/303291. (online)
- ↑ W. Probst, Europa-Universität Flensburg, §Auf dem Weg zur Chloroplastenbildung
- ↑ W. Probst, Europa-Universität Flensburg, §„Verdauungsendosymbiosen“
- ↑ John P. McCutcheon, Carol D. von Dohlen: An Interdependent Metabolic Patchwork in the Nested Symbiosis of Mealybugs. Current Biology 21 (16), S. 1366-1372, doi:10.1016/j.cub.2011.06.051. PMC 3169327 (freier Volltext). Zitat: „an unnamed Gammaproteobacteria, for which we propose the name Candidatus Moranella endobia, lives inside the Betaproteobacteria Candidatus Tremblaya princeps“: eine sekundäre Endosymbiose also.
- ↑ Nick Lane: Der Funke des Lebens - Energie und Evolution, Konrad Theiss Verlag, (C) 2017 by WBG, ISBN 978-3-8062-3484-8. Englischer Originaltitel: Nick Lane: The Vital Question - Energy, Evolution, and the Origins of Complex Life, Ww Norton, 2015-07-20, ISBN 978-0-393-08881-6, PDF (Memento vom 10. September 2017 im Internet Archive). Textpassagen nahe Abbildung/Figure 10. (Struktur der ATP-Synthase)
- ↑ E. Hilario, J. P. Gogarten: Horizontal transfer of ATPase genes--the tree of life becomes a net of life, in: Biosystems. 1993;31(2-3): S. 111-119. PMID 8155843
Dieser Artikel basiert ursprünglich auf dem Artikel Endosymbiontentheorie aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |