Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Randbedingung

Aus Jewiki
Zur Navigation springen Zur Suche springen

Randbedingungen sind im Allgemeinen die Umstände, die nur mit großem Aufwand oder gar nicht beeinflussbar sind und daher als gegebene Größen bei Rechnungen verwendet werden müssen.

Randbedingungen und Differentialgleichungen

Im Bereich der Differentialgleichungen sind Randbedingungen konkrete Angaben zum Berechnen der Lösungsfunktion auf einer Definitionsmenge D. Dazu werden die Werte der Funktion auf dem Rand (im topologischen Sinn) des gewünschten Definitionsbereichs D vorgegeben. Im einfachsten Fall ist ein Intervall und die Randbedingungen sind vorgegebene Funktionswerte . Werden hier statt zwei Werten nur an einem Randpunkt des Intervalles – meistens a – Werte für u und zusätzlich für Ableitungen von u vorgegeben, spricht man von einem Anfangswertproblem und nennt die vorgegebenen Werte seine Anfangsbedingungen.

Bei partiellen Differentialgleichungen betrachtet man die Differentialgleichung meistens auf Sobolew-Räumen. In diesen Räumen werden Funktionen, die bis auf Nullmengen übereinstimmen, als gleich angesehen. Da der Rand eines Gebietes üblicherweise eine Nullmenge ist, ist der Begriff der Randbedingung problematisch. Lösungen für dieses Problem sind sobolewsche Einbettungssätze oder – allgemeiner – Spuroperatoren.

Randwertaufgaben haben nicht immer eine Lösung (siehe Beispiel), im Falle ihrer Existenz ist die Lösung nicht in allen Fällen eindeutig. Die Berechnung einer Näherungslösung für eine Randwertaufgabe mit Mitteln der numerischen Mathematik ist oft aufwendig und läuft meist auf die Lösung sehr großer Gleichungssysteme hinaus.

Beispiel

Sei die gegebene Differentialgleichung . Die Lösungsmenge dieser Gleichung ist .

  • Gesucht ist die Lösung mit und Die Lösung ist .
  • Periodische Randbedingung: Gesucht ist die Lösung mit und Es gibt unendlich viele Lösungen der Form mit beliebigem .
  • Gesucht ist die Lösung mit und Es gibt keine Lösung.

Arten von Randbedingungen

Es gibt unterschiedliche Möglichkeiten, auf dem Rand des betrachteten Gebietes Werte vorzuschreiben. Eine Möglichkeit ist es, Werte der Lösung vorzuschreiben, im Fall einer auf dem Intervall definierten gewöhnlichen Differentialgleichung also und , dann spricht man von Dirichlet-Randbedingungen. Auf der anderen Seite kann man Bedingungen an die Ableitungen stellen, also und vorgeben, dann spricht man von Neumann-Randbedingungen (bei gewöhnlichen Differentialgleichungen, wie oben ausgeführt, von Anfangsbedingungen). Ein Spezialfall sind periodische Randbedingungen, hier muss (im Beispiel einer auf dem Intervall betrachteten gewöhnlichen Differentialgleichung) bzw. gelten.

Künstliche Randbedingungen

Bei unbeschränkten Gebieten erfordert die numerische Lösung üblicherweise eine Einschränkung des Gebiets. Hier sind dann Randbedingungen vorzugeben, die im eigentlichen Problem nicht vorhanden, also künstlich sind.

Siehe auch

Weblinks

Wiktionary: Randbedingung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Dieser Artikel basiert ursprünglich auf dem Artikel Randbedingung aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.