Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Schätzmethode (Statistik)
Schätzmethoden (auch Schätzverfahren) werden in der mathematischen Statistik gebraucht. Man verwendet sie, um Schätzfunktionen für unbekannte Parameter einer statistischen Grundgesamtheit zu konstruieren.
Die drei klassischen Schätzmethoden sind
Theoretische Vorzüge hat auch die Minimum-Chi-Quadrat-Methode.
Die verschiedenen Verfahren sind zum Teil konkurrierend, zum Teil auch ergänzend.
Maximum-Likelihood-Methode
Man betrachtet hier die Beobachtungen als Stichproben-Realisationen von n, in der Regel stochastisch unabhängigen, Zufallsvariablen mit einem bekannten Verteilungstyp. Die Parameter der Verteilung hängen vom gesuchten Parameter ab und der Schätzwert des Parameters ergibt sich als der Wert, der mit größter Wahrscheinlichkeit die beobachtete Stichprobe hervorbringen würde.
Der Vorteil der Maximum-Likelihood-Methode liegt in den Eigenschaften der Schätzfunktion. Zum einen ist sie oft konsistent (d.h. je mehr Beobachtungen man in der Stichprobe hat, desto genauer kann man den gesuchten Parameter schätzen) und asymptotisch effizient (d.h. für große Stichprobenumfänge gibt es keine bessere Schätzfunktion). Man kann sehr allgemein Signifikanztests für Modellvergleiche formulieren.
Ein wesentlicher Nachteil ist es, dass man den Verteilungstyp der Stichprobenvariablen kennen muss. Irrt man sich hierbei, kann die Schätzfunktion vollkommen falsche Werte liefern. Des Weiteren muss zur Auffindung des Parameters meist eine numerische Maximierung durchgeführt werden, die unter Umständen in einem lokalen statt globalen Maximum landet.
Da jedoch die Vorteile überwiegen, dürfte die Maximum-Likelihood-Methode die am meisten genutzte Schätzmethode sein.
Kleinste-Quadrate-Methode
Hier betrachtet man ebenfalls die Beobachtungen als Realisationen von n Zufallsvariablen . Hierbei hängt der Erwartungswert direkt oder durch eine bekannte Funktion vom gesuchten Parameter sowie einer Störvariablen ab. Daher bestimmt man den gesuchten Parameter so, dass die Summe der quadrierten Störungen möglichst klein wird.
Das klassische Beispiel ist die lineare Regression: die Regressiongerade mit den Parametern und wird mit einer Störvariablen überlagert. Man beobachtet also . Für die Zufallsvariable gilt: und . Nun berechnet man den summierten quadrierten Fehler und minimiert ihn um Schätzwerte für und zu finden.
Der Vorteil der Kleinste-Quadrate-Methode ist, dass keine Annahme über den Verteilungstyp gemacht werden muss, sondern nur bzgl. des Zusammenhangs zwischen dem Erwartungswert und dem unbekannten Parameter. Damit ist diese Schätzmethode in einem breiteren Problemkreis anwendbar.
Der Vorteil ist jedoch auch ein Nachteil. Da nur Information über den Erwartungswert benutzt wird, und nicht über die Verteilung wie bei der Maximum-Likelihood-Methode, weisen die Schätzfunktionen nicht so gute Eigenschaften wie Schätzfunktionen aus der Maximum-Likelihood-Methode auf. Falls der Erwartungswert nicht linear vom Parameter abhängt, müssen auch bei dieser Methode im Allgemeinen numerische Näherungsverfahren zur Bestimmung des Minimums verwendet werden.
Beispiel
In einem neuen Spiel kann man 1,00 Euro mit Wahrscheinlichkeit verlieren, 1,00 Euro mit Wahrscheinlichkeit gewinnen und mit Wahrscheinlichkeit weder Geld verlieren noch gewinnen. Das Spiel wird nun sechsmal gespielt mit dem Ergebnis: −1 EUR, 1 EUR, −1 EUR, 0 EUR, 1 EUR, 1 EUR. Wie groß ist der Wert von ?
Maximum-Likelihood-Methode
Nach der Maximum-Likelihood-Methode ergibt sich die Wahrscheinlichkeit für die beobachtete Stichprobe als
.
Die Maximierung ergibt dann einen Schätzwert .
Kleinste-Quadrate-Methode
Für die Kleinste-Quadrate-Methode braucht man den Erwartungswert , d.h. im Durchschnitt erwartet man EUR Gewinn pro Spiel. Für jede Beobachtung berechnet man den quadrierten Fehler zwischen dem beobachteten Gewinn und dem erwarteten Gewinn pro Spiel und summiert diese:
Die Minimierung ergibt dann einen Schätzwert .
Minimum-Chi-Quadrat-Methode
Die Minimum-Chi-Quadrat-Methode ist verwandt mit der Kleinsten-Quadrate-Methode. Jedoch wird dabei davon ausgegangen, dass die Zufallsvariablen diskret sind (das schließt auch klassierte Daten ein). Das Auffinden des Minimums der quadrierten Fehler wird schwierig, da der Minimierungsalgorithmus mit Unstetigkeitsstellen umgehen muss. Stattdessen betrachtet man die Zufallsvariablen , die Häufigkeit mit der die Merkmalsausprägung (oder Klasse) auftritt.
Kann man die erwarteten Häufigkeiten mit den gesuchten Parametern verbinden, so minimiert man die Teststatistik des Chi-Quadrat-Anpassungstests, um Schätzwerte für die gesuchten Parameter zu finden.
Beispiel
In einem Buch wurden zufällig sechs Sätze ausgewählt und gezählt, wie viele Nebensätze es enthält. Es ergab sich, dass drei Sätze keinen Nebensatz enthielten, zwei Sätze einen Nebensatz und nur ein Satz mehr als einen Nebensatz. Unterstellt man, dass die Nebensätze Poisson-verteilt sind, stellt sich die Frage, wie groß ist, die mittlere Anzahl der Nebensätze pro Satz.
Maximum-Likelihood-Methode
Nach der Maximum-Likelihood-Methode ergibt sich die Wahrscheinlichkeit für die beobachtete Stichprobe als
.
Die Maximierung ergibt dann einen Schätzwert .
Minimum-Chi-Quadrat-Methode
Für die Minimum-Chi-Quadrat-Methode braucht man die erwarteten Häufigkeiten: , und
Die Minimierung ergibt dann einen Schätzwert .
Momentenmethode
Man betrachtet hier die Beobachtungen als Stichproben-Realisationen von n, in der Regel stochastisch unabhängigen, Zufallsvariablen mit einem bekannten Verteilungstyp. Die Momente der jeweiligen Verteilung hängen von den Verteilungsparametern ab, die wiederum den gesuchten Parameter beinhalten und man erhält Gleichungen zwischen den gesuchten Parametern und den Momenten. Die Momente können wiederum aus den Beobachtungsdaten geschätzt werden () und man erhält ein Gleichungssystem, das nach den gesuchten Parametern aufgelöst werden kann. Die Lösung ist dann eine Schätzung des gesuchten Parameters.
Der Vorteil der Momentenmethode liegt in der einfachen Berechenbarkeit, auch wenn zur Lösung eines eventuell nicht-linearen Gleichungssystems ein numerisches Iterationsverfahren benutzt werden muss. Sie kann aber auch eingesetzt werden, wenn die Stichprobenvariablen nicht unabhängig sind. In einem solchen Fall kann die Schätzung mit einer Maximum-Likelihood-Methode sehr kompliziert werden.
Die einfache Berechenbarkeit ist aber auch der Nachteil, da nicht alle Informationen aus der Stichprobe ausgenutzt werden. Dies kann dazu führen, dass bei kleinen Stichproben Schätzwerte auftreten, die außerhalb des Parameteraums liegen (z.B. negative Werte für geschätzte Varianzen). Die Schätzfunktionen aus der Momentenmethode sind meist nicht effizient, d.h. für große Stichprobenumfänge gibt es bessere Schätzfunktionen.
Manchmal wird bei komplexen Problemen die Momentenmethode eingesetzt, um Startwerte für die Parameter in der Maximum-Likelihood-Methode zu erhalten.
Beispiel
Der Lohn von Angestellten sei Pareto-verteilt im Intervall ( sei der Mindestlohn). Es wurde eine Stichprobe von drei Angestellten beobachtet, die jeweils das 1,2-, 1,5- und 1,8 fache des Mindestlohnes verdienen. Gesucht ist der Parameter ; denn je größer desto geringer ist die Wahrscheinlichkeit für einen hohen Lohn: .
Maximum-Likelihood-Methode
Nach der Maximum-Likelihood-Methode ergibt sich die Likelihood für die beobachtete Stichprobe als
Die Maximierung ergibt dann einen Schätzwert , d.h. die Wahrscheinlichkeit mehr als das Doppelte des Mindestlohnes zu verdienen beträgt in diesem Modell knapp 1,7%.
Momentenmethode
Für die Pareto-Verteilung ergibt sich (falls ). Der Erwartungswert wird geschätzt mit dem arithmetischen Mittel, d.h. es gilt
- .
Auflösen der Gleichung ergibt dann einen Schätzwert , d.h. die Wahrscheinlichkeit mehr als das Doppelte des Mindestlohnes zu verdienen beträgt in diesem Modell 12,5%.
Siehe auch
- Identifizierbarkeit
- Schätzfunktion
- Regressionsanalyse
- Konfidenzintervall
- Statistischer Test
- Vergleichen und Schätzen
Literatur
- Hartung, J., Elpelt, B., Klösener, K-H.: Statistik, München, Wien 1995
- Sixtl, F.: Der Mythos des Mittelwertes, München, Wien 2000
Weblinks
- Volker Schmidt: Methoden der Statistik aus dem Vorlesungsskript Stochastik für Informatiker, Physiker, Chemiker und Wirtschaftswissenschaftler
Dieser Artikel basiert ursprünglich auf dem Artikel Schätzmethode (Statistik) aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |