Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Schmetterlingseffekt

Aus Jewiki
Zur Navigation springen Zur Suche springen
Dieser Artikel beschreibt den Begriff aus der Chaostheorie. Zum Rap-Album siehe Der Schmetterlingseffekt.

Der Schmetterlingseffekt (englisch butterfly effect) ist ein Phänomen der Nichtlinearen Dynamik. Er tritt in nichtlinearen dynamischen, deterministischen Systemen auf und äußert sich dadurch, dass nicht vorhersehbar ist, wie sich beliebig kleine Änderungen der Anfangsbedingungen des Systems langfristig auf die Entwicklung des Systems auswirken.

Die namensgebende Veranschaulichung dieses Effekts am Beispiel des Wetters stammt von Edward N. Lorenz „Kann der Flügelschlag eines Schmetterlings in Brasilien einen Tornado in Texas auslösen?[1]“ Die Analogie erinnert zwar an den Schneeballeffekt, bei dem kleine Effekte sich über eine Kettenreaktion bis zur Katastrophe selbst verstärken. Beim Schmetterlingseffekt geht es jedoch um die Unvorhersehbarkeit der langfristigen Auswirkungen.

Ursprung der Bezeichnung

Der einprägsame Begriff Schmetterlingseffekt stammt von dem US-amerikanischen Meteorologen Edward N. Lorenz, der 1972 vor der American Association for the Advancement of Science einen Vortrag mit dem Titel Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas? hielt.[2] In seiner ursprünglichen Form verwendete er allerdings den Flügelschlag einer Möwe statt des Schmetterlings.

Wissenschaftlicher Hintergrund

Datei:Lorenz chaos.ogv

Datei:Double pendulum simultaneous realisations.ogg

Vorarbeiten zu der Theorie leistete Lorenz mit einer Arbeit aus dem Jahre 1963[3], in der er eine Berechnung zur Wettervorhersage mit dem Computer unternahm. Er untersuchte im Zusammenhang mit langfristigen Wetterprognosen an einem vereinfachten Konvektionsmodell das Verhalten von Flüssigkeiten bzw. Gasen bei deren Erhitzung: hier bilden sich zunächst Rollen (heißes Gas steigt auf einer Seite auf, verliert Wärme und sinkt auf der anderen Seite wieder ab), die bei weiterer Wärmezufuhr instabil werden.

Dieses Verhalten charakterisierte er anhand der drei verbundenen Differentialgleichungen. Das numerische Ergebnis projizierte er in den Phasenraum und erhielt jenen seltsamen Attraktor, der später als Lorenz-Attraktor bekannt wurde: eine unendlich lange Trajektorie im dreidimensionalen Raum, die sich nicht selbst schneidet und die Form zweier Schmetterlingsflügel hat.

Lorenz stieß auf das chaotische Verhalten seines Modells eher zufällig. Um Rechenzeit zu sparen, hatte er bei der numerischen Lösung der o. a. Gleichungen auf Zwischenergebnisse bereits durchgeführter Berechnungen zurückgegriffen, hierbei jedoch nur drei Dezimalstellen berücksichtigt, obwohl der Computer mit einer Genauigkeit von sechs Dezimalstellen rechnete. Das Resultat waren zunehmende Abweichungen im Zeitverlauf zwischen den alten und neuen Berechnungen, was Lorenz zu seinen Aussagen über die Sensitivität gegenüber den Anfangsbedingungen bewog. Von nahezu demselben Ausgangspunkt divergierten die Wetterkurven, bis sie schließlich keine Gemeinsamkeit zeigten.

Bei seiner ersten Berechnung gab er einen Startwert für eine Iteration auf sechs Dezimalstellen genau an (0,506127), bei der zweiten Berechnung auf drei (0,506), und obwohl diese Werte nur um etwa 1/10.000 voneinander abwichen, wich im weiteren Verlauf diese Berechnung mit der Zeit von der ersten stark ab.

Der Schmetterlingseffekt tritt bei Systemen auf, die deterministisches chaotisches Verhalten zeigen. Diese Systeme besitzen die Eigenschaft, dass sich beliebig kleine Unterschiede in den Anfangsbedingungen (Clinamen) im Laufe der Zeit zu starken Unterschieden im System führen; sie sind also sensitiv abhängig von den Anfangswerten. Dieses Phänomen kann mittels der sogenannten Ljapunow-Exponenten quantifiziert werden.

Beispiele

Meteorologie

Da die Anfangsbedingungen experimentell immer nur mit endlicher Genauigkeit bestimmt werden können, ist eine Konsequenz dieses Effekts für solche Systeme, dass es unmöglich ist, ihr Verhalten für längere Zeit vorherzusagen. Zum Beispiel kann das Wetter für einen Tag relativ genau prognostiziert werden, während eine Vorhersage für einen Monat kaum möglich ist. Selbst wenn die ganze Erdoberfläche mit Sensoren bedeckt wäre, diese nur geringfügig voneinander entfernt lägen, bis in die höchsten Lagen der Erdatmosphäre reichten und exakte Daten lieferten, wäre auch ein unbegrenzt leistungsfähiger Computer nicht in der Lage, langfristig exakte Prognosen der Wetterentwicklung zu machen. Da das Computermodell die Räume zwischen den Sensoren nicht erfasst, kommt es zu geringfügigen Divergenzen zwischen Modell und Realität, die sich dann positiv verstärken und zu großen Unterschieden führen.

Beispielsweise lassen sich aus den Daten von 1000 Wetterstationen einigermaßen zuverlässige Prognosen über einen Zeitraum von vier Tagen machen. Für entsprechende Vorhersagen über elf Tage bräuchte man bereits 100 Millionen gleichmäßig über die Erde verteilte Messstationen. Absurd wird das Vorhaben, wenn sich die Vorhersage über einen Monat erstrecken soll; denn dann wären 1020 Wetterstationen erforderlich, das heißt je eine auf je fünf Quadratmillimeter Erdoberfläche (Lit.: Heiden).

Allerdings ist das Lorenz-Modell eigentlich viel chaotischer als der tatsächliche Wetterverlauf. Die Gleichungen sind viel instabiler als die grundlegenden physikalischen Gleichungen. Der Mathematiker Wladimir Igorewitsch Arnold gibt als eine prinzipielle obere Schranke für die Wettervorhersage zwei Wochen an.

Zeltabbildung

Schmetterlingseffekt mit der Zeltabbildung

Ein minimales Beispiel für den Schmetterlingseffekt ist die Zeltabbildung.

Im Diagramm wird die Differenz zwischen den Werten zweier solcher Abbildungen mit leicht unterschiedlichem Startparameter (hier: 0,506 und 0,506127) über der Anzahl der Iterationen (im Diagramm dargestellt als „Zeit“) aufgetragen. Beide Abbildungen haben den gleichen Kontrollparameter, der so gewählt wurde, dass die Zeltabbildung chaotisches Verhalten zeigt (erkennbar im entsprechenden Bifurkationsdiagramm). Die maximal mögliche Abweichung ist ± 1. Die beiden Abbildungen sind demnach schon nach wenigen Iterationen völlig verschieden.

Planetenbahnen

Wenn mehr als zwei Himmelskörper gravitativ aneinander gebunden sind, können minimale Änderungen der Ausgangssituation im Laufe der Zeit zu großen nichtvorhersagbaren Änderungen der Bahnen und Positionen führen. Dieses Verhalten ist Thema des Dreikörperproblems.

Künstlerische Verarbeitungen

Vor dem Hinzufügen neuer Einträge in diesem Abschnitt beachte bitte die aktuellen und vorangegeangenen Diskussionen und diskutiere erst, bevor du änderst. Möglicherweise wurden dein beabsichtigter Eintrag und seine Relevanz für das Lemma bereits diskutiert. Auf der sicheren Seite bist du, wenn du eine taugliche Quelle nennst, die den Bezug belegt.

Belletristik

Film

Fernsehserien

Videospiele

Literatur

  • Edward N. Lorenz: The Essence of Chaos. University of Washington Press, Seattle WA 1993, ISBN 0-295-97270-X.
  • Uwe an der Heiden: Chaos und Ordnung, Zufall und Notwendigkeit. In: Günter Küppers (Hrsg.): Chaos und Ordnung. Formen der Selbstorganisation in Natur und Gesellschaft (= Reclams Universal-Bibliothek. 9434). Reclam, Stuttgart 1996, ISBN 3-15-009434-8, S. 111.

Einzelnachweise

  1. Edward N. Lorenz, Predictability: Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?, Titel des Vortrags im Jahr 1972 während der Jahrestagung der American Association for the Advancement of Science; laut Science 320, 2008, S. 431
  2. Erstveröffentlichung in Edward Lorenz: The Essence of Chaos. Seattle 1993, Appendix 1, S. 181–184.
  3. Edward N. Lorenz: Deterministic Nonperiodic Flow. In: Journal of the Atmospheric Sciences. 20, Nr. 2, März 1963, S. 130–141. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. Abgerufen am 3. Juni 2010.
  4. Dominik Weber: Life is Strange: Die Schmetterlings-Zeitreise im Test - Games, PlayStation 3, PlayStation 4, Xbox 360, Xbox One. In: GamingNerd.net. 28. Januar 2016, abgerufen am 23. Dezember 2019 (deutsch).
Dieser Artikel basiert ursprünglich auf dem Artikel Schmetterlingseffekt aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.