Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Ultraschall

Aus Jewiki
Zur Navigation springen Zur Suche springen
Dieser Artikel behandelt den Ultraschall im physikalischen Sinne. Die umgangssprachlich als Ultraschall bezeichneten medizinischen Verfahren werden unter Sonografie bzw. Ultraschalltherapie behandelt. Zu anderen gleichnamigen Bedeutungen siehe Ultraschall (Begriffsklärung).
Ultraschall-Echograf

Als Ultraschall (oft als US abgekürzt) bezeichnet man Schall mit Frequenzen oberhalb des Hörfrequenzbereichs des Menschen. Er umfasst Frequenzen ab etwa 16 kHz.[1] Schall ab einer Frequenz von etwa 1 GHz wird auch als Hyperschall bezeichnet.[1] Bei Frequenzen unterhalb des für Menschen hörbaren Frequenzbereichs spricht man dagegen von Infraschall.[1]

In Gasen und Flüssigkeiten breitet sich Ultraschall überwiegend als Longitudinalwelle aus. In Festkörpern kommt es wegen der auftretenden Schubspannungen zusätzlich auch zur Ausbreitung von Transversalwellen. Der Übergang von Luftschall in Festkörper oder Flüssigkeiten (oder umgekehrt) ist nur mit einem Koppelmedium mit angepassten akustischer Impedanz sowie bestimmter Dicke effektiv.

Ultraschall wird je nach Material eines Hindernisses an diesem reflektiert, in ihm absorbiert, gestreut oder tritt hindurch (Transmission). Wie bei anderen Wellen tritt auch Brechung, Beugung und Interferenz auf.

Luft weist eine stark mit der Frequenz steigende Dämpfung für Ultraschall auf. In Flüssigkeiten breitet sich Ultraschall dagegen dämpfungsarm aus. Bei hohen Schalldrücken kommt es jedoch zur Bildung von Dampfblasen (Kavitation), die bei ihrem Kollaps extrem hohe Drücke und Temperaturen hervorrufen können. Bei Frequenzen zwischen 2 und 20 MHz tritt Kavitation in reinem, entgastem Wasser erst ab einem Schalldruck von 15 MPa auf. Kavitation wird z. B. zur Ultraschallreinigung genutzt und ist auch aktueller Forschungsgegenstand (Sonolumineszenz).

Erzeugung und Registrierung der Ultraschallwellen

Echo-Laufzeit-Verhalten von Ultraschall

Zur Erzeugung von Ultraschall in Luft eignen sich dynamische und elektrostatische Lautsprecher sowie insbesondere Piezolautsprecher, d. h. membrangekoppelte Platten aus piezoelektrischer Keramik, die durch Umkehr des Piezo-Effekts zu Schwingungen angeregt werden. Mittels piezoelektrischer Kunststoffe (PVDF) lassen sich auch direkt Membranen ansteuern, was ein verbessertes Übertragungsverhalten hervorruft.

Ultraschall in Flüssigkeiten und Festkörpern wurde anfangs nur mit magnetostriktive Wandlern erzeugt (die ersten Echolote arbeiteten auf diese Art). Heute verwendet man zunehmend piezoelektrische Quarz- oder Keramikschwinger. An diese wird eine Wechselspannung mit deren Eigenresonanzfrequenz (oder einer Oberschwingung davon) angelegt. Die Schwingungen werden dann z. B. über den Boden eines Ultraschallbades in die Flüssigkeit übertragen.

Nicht allzu hochfrequenter Ultraschall kann auch durch Galtonpfeifen erzeugt werden.

Der Empfang von Ultraschallwellen kann prinzipiell mit den gleichen elektrischen Wandlern geschehen, wie sie auch zu dessen Erzeugung verwendet werden. Die erhaltenen elektrischen Signale können einer Frequenz-, Phasen- oder Amplitudenauswertung unterzogen werden.

Um Fledermausrufe hörbar zu machen, gibt es Fledermausdetektoren, die den Frequenzbereich der im Ultraschallbereich liegenden Rufe in den hörbaren Bereich verschieben und diese über einen normalen Lautsprecher oder einen Kopfhörer wiedergeben.

Anwendungen der Ultraschallwellen

Ultraschall findet in der Technik und Medizin diverse Anwendungen:

  • Echolot, Sonar: Tiefenmessung und Meeresbodenuntersuchung aus Wasser- und Unterwasserfahrzeugen heraus, Fischfinder
  • Frühe Entfernungsmesser (in Luft) - Wind stört die Messung, heute daher über Laser-Laufzeit
  • Bewegungssensor - Raumsicherung über Dopplereffekt
  • Ultraschallschweißen
  • Ultraschalldichtemessung
  • zur Bestimmung der Schallgeschwindigkeit von Flüssigkeiten (Ausnutzen des Debye-Sears-Effektes)
  • zur Herstellung von extrem glatten Flächen durch Ultraschallschwingläppen, etwa in der Raumfahrtindustrie
  • zur kontinuierlichen, berührungslosen Füllstandsmessung bei flüssigen und festen Medien unterschiedlichster Konsistenz und Oberflächenbeschaffenheit
  • Ultraschallmikroskop
  • Ultraschalllinearantrieb: Kernstück der Systeme ist eine Piezokeramikplatte, in der eine hochfrequente resonante Eigenschwingung angeregt wird. Eine an der Platte angebrachte „Reibnase“ wird dadurch in eine lineare Bewegung derselben Frequenz versetzt. Durch den Kontakt mit einer Reibschiene treibt sie den bewegten Teil der Mechanik an. Jeder Zyklus erzeugt einen mikroskopisch kleinen Schritt von wenigen Nanometern, sodass in der Summe eine gleichmäßige Bewegung mit praktisch unbegrenztem Stellbereich entsteht.
  • Berührungslose Handhabung mit Ultraschall: Durch verschiedene fluiddynamische Effekte im Ultraschallfeld können Gegenstände zum Schweben gebracht werden.
    Ultraschall-„Verzögerungsleitung“ (Farbfernsehempfang, 64 µs Schallweg); links geöffnet, rechts Funktionsweise und Schallweg
  • Informationsübertragung
    • Frühe Fernbedienungen (1970er Jahre) für Fernsehgeräte
    • Kommunikation mit U-Booten und Unterwassergeräten
    • Signalverzögerung in elektronischen Schaltungen (akustische Verzögerungsleitung)
  • Werkstoffprüfungen mit Ultraschallprüfgeräten; über Reflexe an Unstetigkeitsstellen der Dichte und ihre Signal-Laufzeit können ungewünschte Einschlüsse, Lunker oder Risse entdeckt werden
  • Industrielle Teilereinigung bis hin zum Auflösen, Herauslösen und Zerstören von Material in Ultraschallreinigungsgeräten
  • Sonografie und Echokardiografie zur Untersuchung von Mensch und Tier
    • M-Mode ("motion mode"), beispielsweise zur Darstellung von fetalen Herzrhythmusstörungen
    • B-Mode ("brightness mode"), um zweidimensionale Schnittbilder zu erhalten
    • Doppler: Messung der Blutstromgeschwindigkeit mittels Dopplereffekt
    • Farbdoppler: Farbig codierte flächige Darstellung der Blutstromgeschwindigkeit in Gefäßen
  • Ultraschalltherapie
  • Ultraschall-Zellaufschluss
  • Ultraschall-Schneiden biologischer Gewebe
  • Aufschließen von Naturfasern mit Ultraschall
  • Geschwürbehandlung: Hochintensiver fokussierter Ultraschall
  • Zahnsteinentfernung durch wassergekühlte hochfrequent schwingende Metallspitze
  • Ultraschallschwingläppen (älter: Ultraschallbohren): Feinbearbeitung von Keramik und sonstiger spröder Werkstoffe
  • Ultraschall-Sensoren, Entfernungsmessung beispielsweise zur Ansteuerung von Motoren in Autofokus-Objektiven (Polaroid)
  • Ultraschallvernebler: Zerstäuben, Vernebeln, Emulgieren, Dispergieren und Mischen von Flüssigkeiten (beispielsweise bei Luftbefeuchtern, Nebelmaschinen)
  • Entgasung von Flüssigkeiten
  • Akustooptische Modulatoren (AOM) in Lasern
  • Geräte zur Abschreckung von Mardern (Marderabwehr) und anderen Tieren, die vor Ultraschall flüchten sollen; eine Wirkung konnte wissenschaftlich bisher nicht nachgewiesen werden, dennoch scheinen Geräte mit einer sehr kräftigen Schallkeule die Tiere erfolgreich fernzuhalten.
  • Hundepfeifen
  • Ultraschalldurchflusssensor für Rohre und Kanäle
  • Anwendungen bei Fledermaus- und Delphinforschung, da diese sich über Ultraschall orientieren beziehungsweise damit kommunizieren
  • Die Aufzeichnung der Ultraschallvokalisation von Ratte und Maus (ultrasonic vocalization) wird in der psychopharmakologischen Forschung wie auch in der neurowissenschaftlichen Verhaltensforschung genutzt.[2][3]
  • Auch die Nierensteinzertrümmerung (Lithotripsie) basiert auf der Wirkung von kurzen, auf den Stein fokussierten Ultraschallimpulsen, sogenannten akustischen Stoßwellen.
  • Herstellung von Proteinrohextrakten aus mikrobiologischen Proben (vor allem Bakterien, sowohl in Forschung als auch Industrie) durch Ultraschall, da die Schallwellen zur Lyse der Zellwand führen
  • Einwirkung auf das Unbewusste, z. B. in den Bereichen "Lernen im Schlaf", Kundenkaufverhalten, Produktivität.
  • Doppelbogenkontrolle mit Ultraschall in der Drucktechnik

Ultraschall in der Tierwelt

In der Tierwelt dient Ultraschall zur Orientierung (Echoortung) und Kommunikation. Die Ortungsrufe der Fledermäuse zeigen im Frequenzspektrum, je nach Art, Ultraschallanteile bis zu 200 kHz (Rundblattnasen).[4] Nachtfalter hören im Ultraschallbereich bis zu Frequenzen von 200 kHz.[5] Zahnwale, insbesondere Delfine, nutzen die Echoortung zur Orientierung und speziell auch zur Ortung ihrer Jagdbeute. Die Frequenz der Klicklaute beträgt zwischen 120 und 180 kHz.[5] Mäuse und Ratten kommunizieren mittels Rufen im Ultraschallbereich (Ultraschallvokalisationen). So lösen bei der Ratte beispielsweise prosoziale Ultraschallvokalisationen mit einer Frequenz von ca. 50 kHz soziales Annäherungsverhalten aus.[6]

Ultraschallerzeugung in Pflanzen

Bäume erzeugen bei Wassermangel Laute im Ultraschallbereich. Die Laute entstehen, wenn bei Trockenheit der Wasserstrang in den Gefäßen, Wasser von den Wurzeln in die Baumwipfel und Blätter führen, abreißt. Dabei bilden sich Kavitationsbläschen, die die Wände der wasserführenden Gefäße kurzzeitig in Schwingung versetzen. Die Intensität der Laute ist dabei abhängig von der Gefäßgröße und vom Trockenheitsgrad.[7][8]

Einzelnachweise

  1. 1,0 1,1 1,2 DIN 1320 Akustik Begriffe
  2. Ultrasonic vocalizations as a tool for research on emotion and motivation in rodents
  3. Schallsignale der Hausmaus (PDF; 5,5 MB)
  4. Christian Dietz, Otto von Helversen, Dietmar Nill: Handbuch der Fledermäuse Europas und Nordwestafrikas. Kosmos Verlags-GmbH, Juni 2007, ISBN 3-440-09693-9. S. 35-47 und Abschnitte Ortungslaute bei den Einzelartbeschreibungen
  5. 5,0 5,1 Rüdiger Wehner, Walter Gehring, Alfred Kühn: Zoologie, Georg Thieme Verlag, 2007, ISBN 3-13-772724-3, Seite 445 (Google books)
  6. Ultrasonic Communication in Rats: Can Playback of 50-kHz Calls Induce Approach Behavior?
  7. Schwingende Gefäße: Durst lässt Bäume aufschreien. Spiegel online, 23. Juli 2014, abgerufen am 25. Juli 2014.
  8. A. Ponomarenko, O. Vincent, A. Pietriga, H. Cochard, É. Badel, P. Marmottant: Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood, J. R. Soc. Interface, Oktober 2014, Band 11, Nr. 99, online 23. Juli 2014

Weblinks

 Commons: Ultraschall – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Ultraschall – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Dieser Artikel basiert ursprünglich auf dem Artikel Ultraschall aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.