Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Zellkultur
Als Zellkultur wird die Kultivierung tierischer oder pflanzlicher Zellen in einem Nährmedium außerhalb des Organismus bezeichnet. Zelllinien sind Zellen einer Gewebeart, die sich im Lauf dieser Zellkultur unbegrenzt fortpflanzen können. Es werden sowohl immortalisierte (unsterbliche) Zelllinien als auch primäre Zellen kultiviert (Primärkultur). Als Primärkultur bezeichnet man eine nicht immortalisierte Zellkultur, die direkt aus einem Gewebe gewonnen wurde. Zellkulturen finden breite Verwendung in der biologischen und medizinischen Forschung, Entwicklung und Produktion.
Geschichte
Seit den Anfängen der naturwissenschaftlichen Forschung gab es Bestrebungen, Zellen und Gewebe auch außerhalb eines Organismus am Leben zu erhalten, um sie so nähergehend untersuchen zu können. Wilhelm Roux gelang es erstmals 1885, embryonale Hühnerzellen für mehrere Tage in einer Salzlösung am Leben zu erhalten und so das grundlegende Prinzip zu demonstrieren. Im Jahr 1913 zeigte Alexis Carrel, dass Zellen auch länger in Zellkultur wachsen können, insofern sie gefüttert und aseptisch gehalten werden.
Die älteste tierische Zelllinie ist vermutlich das Sticker-Sarkom, ein infektiöser Tumor natürlichen Ursprungs, der vor etwa 200 bis 11.000 Jahren entstand.[1][2][3] Seit seiner Entstehung hat das Sticker-Sarkom etwa 1,9 Millionen Mutationen angesammelt, 646 Gene wurden deletiert.[3]
In den Jahren 1951/1952 wurde erstmals eine unsterbliche menschliche Zelllinie aus einem Cervixkarzinom etabliert, welche später unter dem Namen HeLa bekannt wurde. In den folgenden Jahrzehnten wurden insbesondere Nährmedien, Wachstumsfaktoren und Bedingungen weiterentwickelt und neue Zelllinien etabliert. César Milstein und Georges Köhler entdeckten 1975 die Möglichkeit zur Bildung monoklonaler Antikörper durch Zellfusion von Lymphozyten mit Krebszellen. Darüber hinaus wurden in diesen Jahren Methoden zur gezielten Einführung und Expression von Genen in Zellen, die sogenannte Transfektion, entwickelt.[4]
Körperzellen, die noch nicht ausdifferenziert sind – sogenannte Stammzellen, wurden erstmals 1981 aus Blastozysten einer embryonalen Maus isoliert. Sie neigen in vitro dazu, spontan zu differenzieren. Dies kann durch Faktoren unterbunden werden, welche die Selbsterneuerung der Zellen fördern. Mehrere solcher Stoffe wurden seit Ende der 1980er Jahre identifiziert. Die Forschung in diesem Feld konzentriert sich derzeit auf die Kultivierung und gezielte Ausdifferenzierung von sowohl embryonalen als auch adulten Stammzellen.
Prinzip
Die Arbeiten mit Zellen erfolgen meistens in einem Zellkulturlabor. Das Anlegen von Primärkulturen kann aus unterschiedlichen Geweben erfolgen, beispielsweise aus ganzen Embryonen oder einzelnen Organen wie Haut, Niere usw. Das Gewebe wird mit einer Protease, beispielsweise Trypsin, behandelt, die die Proteine abbaut, die den Zellverband aufrechterhalten. Dadurch werden die Zellen vereinzelt. Durch Zugabe von Wachstumsfaktoren können gezielt manche Zelltypen zur Teilung angeregt werden. Bei schlecht wachsenden Zelltypen werden auch Fütterzellen, basalmembranartige Matrices und rekombinante Bestandteile der extrazellulären Matrix verwendet.
Die einem tierischen oder humanen Gewebe entnommenen Tumorzellen werden nach anfänglichem Wachstum auf einem Nährboden durch Analyse von Oberflächenantigenen (Immunzytologie) oder des Genoms (PCR und Sequenzierung) analysiert und ausgewählt, um dann einen großen Tumorzellklon in Kultur zu bringen. Die Zellen können auch durch Einschleusung eines Plasmids als Vektor genetisch verändert werden. Von der Stammkultur (stock) werden Zellen abgenommen und in flüssigem Stickstoff tiefgekühlt und stehen so dem Versand an andere Forschungseinrichtungen zur Verfügung.
Die meisten Zellen besitzen eine eingeschränkte Lebensdauer (begrenzt durch das Hayflick-Limit), mit Ausnahme von einigen von Tumoren abstammenden Zellen. Nach einer bestimmten Anzahl von Verdopplungen gehen diese Zellen in die Seneszenz und teilen sich nicht mehr. Etablierte oder unsterbliche Zelllinien haben die Fähigkeit erlangt, sich unendlich zu teilen – entweder durch zufällige Mutation (in Tumorzellen) oder durch gezielte Veränderung (beispielsweise durch die künstliche Expression des Telomerase-Gens).
Man unterscheidet auch adhärent (auf Oberflächen) wachsende Zellen wie beispielsweise Fibroblasten, Endothelzellen oder Knorpelzellen von Suspensionszellen, die frei im Nährmedium schwimmend wachsen, wie zum Beispiel Lymphozyten. Die Kulturbedingungen unterscheiden sich stark zwischen den einzelnen kultivierten Zelllinien. Die verschiedenen Zelltypen bevorzugen dabei unterschiedliche Nährmedien, die spezifisch zusammengestellt werden, beispielsweise unterschiedliche pH-Werte oder Konzentration an Aminosäuren oder Nährstoffen. In der Regel wachsen Säugerzellen bei 37 °C mit einer Atmosphäre von 5 % CO2 in speziellen Inkubatoren. Je nach Teilungsrate und Dichte der Zellen werden die Zellverbände alle paar Tage gelöst und auf neue Gefäße verteilt („Passage“ oder „Splitting“ genannt). Die Passagezahl gibt dabei die Häufigkeit an, mit der die Zellen bereits passagiert wurden. Bei adhärenten Zellen in kontinuierlicher Kultur werden die Zellen regelmäßig vereinzelt, um eine Konfluenz und die damit verbundene Zellkontakthemmung zu vermeiden.
Anwendung
Zellkulturen finden besonders in Forschung und Entwicklung breite Anwendung. Der Stoffwechsel, die Teilung und viele weitere zelluläre Prozesse können so in der Grundlagenforschung untersucht werden. Weiterhin werden kultivierte Zellen als Testsysteme eingesetzt, beispielsweise bei der Untersuchung der Wirkung von Substanzen auf die Signaltransduktion und Toxizität der Zelle. Hierbei wird auch die Anzahl von Tierversuchen drastisch reduziert.
Für die Herstellung von etlichen biotechnischen Produkten haben Zellkulturen ebenfalls hohe Bedeutung. Beispielsweise werden monoklonale Antikörper für Forschung und therapeutische Anwendung in der Medizin mittels Zellkultur hergestellt. Obwohl einfache Proteine mit weniger Aufwand auch in Bakterien produziert werden können, müssen komplexere Proteine in der Zellkultur hergestellt werden, da nur hier die passenden Glykosylierungen der Proteine erfolgen. Ein Beispiel hierfür ist Erythropoetin (EPO). Auch viele Impfstoffe werden in der Zellkultur hergestellt. Für die Entwicklung und die Realisierung von industriellen Zellkulturprozessen werden Bioreaktoren eingesetzt, teilweise in Insektenzellkultur. Dabei sind für die Herstellung von biopharmazeutischen Produkten Einweg-Bioreaktoren von vermehrtem Interesse.
In der Pflanzenvermehrung erzeugt man bei der Pflanzlichen Gewebekultur aus Zellkulturen komplette Pflanzen.
Zellkultur-Linien
Zelllinie | Bedeutung | Ursprungsspezies | Ursprungsgewebe | Morphologie | Link |
---|---|---|---|---|---|
293-T | enthält Plasmid mit temperatursensitiver Mutante des Simian-Virus 40 großen T-Anigen | Mensch | Niere (Embryo) Derivat von HEK-293 | Epithel | DSMZ |
A431 | Mensch | Haut | Epithel | Biotech institute (Memento vom 12. April 2009 im Internet Archive) | |
A549 | Mensch | Adenokarzinom der Lunge | Epithel | DSMZ | |
BCP-1 | Mensch | Blut | Lymphozyt | ATCC | |
bEnd.3 | brain endothelial | Maus | Gehirn / Großhirnrinde | Endothel | ATCC |
BHK-21 | syrian baby hamster kidney | Hamster | Niere (embryonal) | Fibroblast | DSMZ |
BxPC-3 | Mensch | Pankreas, Andenokarzinom | Epithel | ATCC | |
BY-2 | Bright Yellow-2 | Tabak | Am Keimling induzierter Kallus | DSMZ (Memento vom 8. November 2007 im Internet Archive) | |
CHO | Chinese hamster ovary | Hamster | Ovarien | Epithel | ICLC (Memento vom 18. Dezember 2012 im Webarchiv archive.is) |
CMT | canine mammary tumor | Hund | Brustdrüse | Epithel | |
COS-1 | Durch Transformation eines origin-defective SV-40 aus CV-1 Zellen hervorgegangen | Affe – Chlorocebus aethiops (Äthiopische Grünmeerkatze) | Niere | Fibroblast | ATCC |
COS-7 | Durch Transformation eines origin-defective SV-40 aus CV-1 Zellen hervorgegangen | Affe – Chlorocebus aethiops | Niere | Fibroblast | ATCC |
CV-1 | Affe – Chlorocebus aethiops | Niere | Fibroblast | DSMZ | |
EPC | herpesviral induziertes, papuläres Epitheliom | Fisch (Pimephales promelas) | Haut | Epithel | ATCC |
HDMEC | human dermal microvascular endothelial cells | Mensch | Vorhaut | Endothel | Journal of Investigative Dermatology[5] |
HEK-293 | human embryonic kidney | Mensch | Niere (embryonal) | Epithel | ATCC |
HeLa | Henrietta Lacks | Mensch | Zervixkarzinom (Gebärmutterhalskrebs) | Epithel | DSMZ |
HepG2 | human hepatocellular carcinoma | Mensch | Leberzellkarzinom | Epithel | ATCC |
HL-60 | human leukemia | Mensch | Promyeloblasten | Blutzellen | DSMZ |
HMEC-1 | immortalized human microvascular endothelial cells | Mensch | Vorhaut | Endothel | Journal of Investigative Dermatology[6] |
HUVEC | human umbilical vein endothelial cells | Mensch | Nabelschnurvene | Endothel | ICLC (Memento vom 18. Februar 2013 im Webarchiv archive.is) |
HT-1080 | Mensch | Fibrosarkom | Bindegewebszellen | Cancer[7] ATCC | |
Jurkat | Mensch | T-Zell-Leukämie | Blutzellen | DSMZ | |
K562 | Mensch | älteste Leukämie-Zelllinie des Menschen | myeloische Blutzellen, etabliert 1975 | DSMZ | |
LNCaP | Mensch | Prostata Adenokarzinom | Epithel | ATCC | |
MCF-7 | Mensch | Brust, Adenokarzinom | Epithel | ATCC | |
MCF-10A | Michigan Cancer Foundation | Mensch | Brustdrüse | Epithel | ATCC |
MDCK II | Madin Darby canine kidney | Hund | Niere | Epithel | ATCC |
MTD-1A | Maus | Epithel | |||
MyEnd | myocardial endothelial | Maus | Endothel | ||
Neuro-2A (N2A) | Neuroblastom | Maus | Gehirn | Neuroblast | ATCC |
NIH-3T3 | NIH, 3-day transfer, inoculum 3 × 105 cells, contact-inhibited NIH Swiss mouse embryo | Maus | Embryo | Fibroblast | ATCC (Memento vom 27. September 2007 im Internet Archive) |
NTERA-2 cl.D1 [NT2/D1] | Pluripotente Zelle mit Tretinoin differenzierbar | Mensch | Hoden, Lungenmetastase | Epithel | ATCC |
P19 | Pluripotente Zelle mit Tretinoi differenzierbar | Maus | Embryonales Karzinom | Epithel | ATCC |
PANC-1 | pancreas 1 | Mensch | Pankreas, Andenokarzinom | Epithel | ATCC |
Peer | Mensch | T cell leukemia | DSMZ | ||
RTL-W1 | rainbow-trout liver – Waterloo 1 cells | Regenbogenforelle – Oncorhynchus mykiss | Fibroblast (wahrscheinlich) | Cell Biol Toxicol.[8] | |
Sf-9 | Spodoptera frugiperda | Insekt – Spodoptera frugiperda (Nachtfalter) | Ovar | DSMZ | |
Saos-2 | Mensch | Osteosarkom | Epithel | ATCC | |
T2 | Mensch | T cell leukemia /B cell line hybridoma | DSMZ | ||
T84 | Mensch | Kolorektales Karzinom / Lungenmetastase | Epithel | ATCC | |
U-937 | Mensch | Burkitt-Lymphom | monozytär | Int J Cancer[9] |
Literatur
- Sabine Schmitz: Der Experimentator: Zellkultur. 1. Auflage. Spektrum Akademischer Verlag, 2007, ISBN 978-3-8274-1564-6.
- Toni Lindl, Gerhard Gstraunthaler: Zell- und Gewebekultur. Von den Grundlagen zur Laborbank. 6. Auflage. Spektrum Akademischer Verlag, 2008, ISBN 978-3-8274-1776-3.
- W. W. Minuth, L. Denk: Advanced Culture Experiments with Adherent Cells. – From single cells to specialized tissues in perfusion culture. Open access publishing. Universität Regensburg 2011, ISBN 978-3-88246-330-9.
Einzelnachweise
- ↑ C. Murgia, J. K. Pritchard, S. Y. Kim, A. Fassati, R. A. Weiss: Clonal origin and evolution of a transmissible cancer. In: Cell (2006), Band 126(3), S. 477–487. PMID 16901782; PMC 2593932 (freier Volltext).
- ↑ I. D. O'Neill: Concise review: transmissible animal tumors as models of the cancer stem-cell process. In: Stem Cells (2011), Band 29(12), S. 1909–1914. doi:10.1002/stem.751. PMID 21956952.
- ↑ 3,0 3,1 H. G. Parker, E. A. Ostrander: Hiding in Plain View-An Ancient Dog in the Modern World. In: Science. 343, 2014, S. 376–378, doi:10.1126/science.1248812.
- ↑ Landmarks
- ↑ Zbigniew Ruszczak, Michael Detmar u. a.: Effects of rIFN Alpha, Beta, and Gamma on the Morphology, Proliferation, and Cell Surface Antigen Expression of Human Dermal Microvascular Endothelial Cells In Vitro. In: Journal of Investigative Dermatology. 95, 1990, S. 693–699, doi:10.1111/1523-1747.ep12514496.
- ↑ Edwin W. Ades, Francisco J. Candal u. a.: HMEC-1: Establishment of an Immortalized Human Microvascular Endothelial Cell Line. In: Journal of Investigative Dermatology. 1992, Band 99, S. 683–690, doi:10.1111/1523-1747.ep12613748.
- ↑ S. Rasheed, W. A. Nelson-Rees, E. M. Toth, P. Arnstein, M. B. Gardner: Characterization of a newly derived human sarcoma cell line (HT-1080) In: Cancer. 1974; 33(4), S. 1027–1033. PMID 4132053.
- ↑ Lucila E. J. Lee, Janine H. Clemons u. a.: Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. In: Cell Biology and Toxicology. 9, 1993, S. 279, doi:10.1007/BF00755606.
- ↑ Christer Sundström, Kenneth Nilsson: Establishment and characterization of a human histiocytic lymphoma cell line (U-937). In: International Journal of Cancer. 1976; 17(5): 565–577.
Dieser Artikel basiert ursprünglich auf dem Artikel Zellkultur aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |