Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Diskrete Mathematik
Die diskrete Mathematik als Teilgebiet der Mathematik befasst sich mit mathematischen Operationen auf endlichen oder höchstens abzählbar unendlichen Mengen. Im Gegensatz zu Gebieten wie der Analysis, die sich mit kontinuierlichen Funktionen oder Kurven auf nicht abzählbaren, unendlichen Mengen beschäftigt, spielt die Stetigkeit in der diskreten Mathematik keine Rolle.
Die in der diskreten Mathematik vertretenen Gebiete (wie etwa die Zahlentheorie oder die Graphentheorie) sind zum Teil schon recht alt, aber die diskrete Mathematik stand lange im Schatten der „kontinuierlichen“ Mathematik, die seit der Entwicklung der Infinitesimalrechnung durch ihre vielfältigen Anwendungen in den Naturwissenschaften (insbesondere der Physik) in den Mittelpunkt des Interesses getreten ist. Erst im 20. Jahrhundert entstand durch die Möglichkeit der raschen digitalen Datenverarbeitung durch Computer (die naturbedingt mit diskreten Zuständen arbeiten) eine Vielzahl von neuen Anwendungen der diskreten Mathematik. Gleichzeitig gab es eine rasante Entwicklung der diskreten Mathematik, die in großem Maße durch Fragestellungen im Zusammenhang mit dem Computer (Algorithmen, theoretische Informatik usw.) vorangetrieben wurde.
Ein Beispiel für ein Gebiet, das am Schnittpunkt von Analysis und diskreter Mathematik liegt, ist die numerische Mathematik, die sich mit der Approximation von kontinuierlichen durch diskrete Größen beschäftigt sowie mit der Abschätzung (und Minimierung) dabei auftretender Fehler.
Kerngebiete
Zu den Kerngebieten der diskreten Mathematik zählen:
- Kombinatorik,
- Zahlentheorie,
- Kodierungstheorie,
- Graphentheorie,
- Spieltheorie,
- Kryptographie,
- Informationstheorie.
Darüber hinaus hat die diskrete Mathematik in folgenden Gebieten zusätzliche Beiträge geliefert:
- Weitere Beiträge der Numerik zur Verbesserung des diskreten Rechnens lassen sich auf den Gebieten der linearen und diskreten Optimierung (die über kombinatorische Aufgaben hinausgeht) finden,
- die diskrete Mathematik hat viele Berührungspunkte mit der Algebra und der mathematischen Logik,
- in der Geometrie gibt es das Teilgebiet der diskreten Geometrie und
- in der Berechenbarkeitstheorie, die ein Teilgebiet der theoretischen Informatik ist, benötigt man endliche Automaten, die in der diskreten Mathematik untersucht werden.
Wissenschaftspreis
Die Fachgruppe Diskrete Mathematik der Deutschen Mathematiker-Vereinigung vergibt im Zwei-Jahres-Rhythmus den nach dem deutschen Mathematiker Richard Rado benannten Richard-Rado-Preis für die beste Dissertation in Diskreter Mathematik.[1]
Studium
Ein Studium der Diskreten Mathematik ist an verschiedenen Universitäten (u. a. TU Berlin) durch eine entsprechende Schwerpunktsetzung innerhalb des Mathematikstudiums möglich. Unter anderem die Technische Universität Berlin[2], die Technische Hochschule Mittelhessen, die Philipps-Universität Marburg, die Georg-August-Universität Göttingen, die Hochschule Bremerhaven, die RWTH Aachen, die Technische Universität München, die Fachhochschule Münster, die Fachhochschule Nordwestschweiz, die Hochschule Kempten, die Fachhochschule Hof sowie die Friedrich-Schiller-Universität Jena behandeln die diskrete Mathematik als Pflichtmodul im Grundstudium der Informatik. Unter den Fachhochschulen bietet die Hochschule Mittweida im Rahmen eines spezialisierten Masterstudiums diese Möglichkeit.
Literatur
- Albrecht Beutelspacher, Marc-Alexander Zschiegner: Diskrete Mathematik für Einsteiger. 4. Aufl. Vieweg Verlag, Wiesbaden 2011, ISBN 3-834-81248-X. 264 S.
- Bernhard Ganter: Diskrete Mathematik: Geordnete Mengen. Springer Spektrum, Berlin Heidelberg 2013, ISBN 978-3-642-37499-9. 192 S.
- Thomas Ihringer: Diskrete Mathematik: eine Einführung in Theorie und Anwendungen. 2. Aufl. Heldermann Verlag, Lemgo 2002, ISBN 3-88538-109-5. 270 S.
- Jiri Matoušek, Jaroslav Nešetřil; Hans Mielke (Übers.): Diskrete Mathematik: eine Entdeckungsreise. 2. Aufl. Springer-Lehrbuch, Berlin 2007, ISBN 3-540-30150-X; ISBN 978-3-540-30150-9. 487 S.
- Karl-Heinz Zimmermann: Diskrete Mathematik. 1. Aufl. Books on Demand (BoD), Hamburg 2006, ISBN 3-8334-5529-2. 412 S.
- Angelika Steger: Diskrete Strukturen 1: Kombinatorik, Graphentheorie, Algebra. 2. Aufl. Springer, Berlin 2007, ISBN 3-540-46660-6. 270 S.
- Angelika Steger, Thomas Schickinger: Diskrete Strukturen 2: Wahrscheinlichkeitstheorie und Statistik. 1. Aufl. Springer, Berlin 2001, ISBN 3-540-67599-X. 249 S.
Weblinks
- Offizielle Webseite der Fachgruppe Diskrete Mathematik
- Videoserie „Diskrete Optimierer“ von DFG Science TV über Mathematiker an der TU Berlin
Quellen
Dieser Artikel basiert ursprünglich auf dem Artikel Diskrete Mathematik aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |