Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Genetik

Aus Jewiki
(Weitergeleitet von Genetiker)
Zur Navigation springen Zur Suche springen
Dieser Artikel behandelt die Genetik als Teilgebiet der Biologie. Zur Genetik in der Sprachwissenschaft siehe Genetische Verwandtschaft (Linguistik)
Die Rekombination der elterlichen Gene führt zu unterschiedlichen Phänotypen innerhalb eines Wurfes

Die Genetik (moderne Wortschöpfung zu griechisch γενεά geneá ‚Abstammung‘, γένεσις génesis ‚Ursprung‘)[1][2] oder Vererbungslehre ist ein Teilgebiet der Biologie und befasst sich mit den Gesetzmäßigkeiten und materiellen Grundlagen der Ausbildung von erblichen Merkmalen und der Weitergabe von Erbanlagen (Genen) an die nächste Generation (Vererbung).

Das Wissen, dass individuelle Merkmale über mehrere Generationen hinweg weitergegeben werden, ist relativ jung; Vorstellungen von solchen natürlichen Vererbungsprozessen prägten sich erst im 18. und frühen 19. Jahrhundert aus.[3] Als Begründer der Genetik gilt der Augustinermönch und Hilfslehrer Gregor Mendel, der in den Jahren 1856 bis 1865 im Garten seines Klosters systematische Kreuzungsexperimente mit Erbsen durchführte und diese statistisch auswertete. So entdeckte er die später nach ihm benannten Mendelschen Regeln, die in der Wissenschaft allerdings erst im Jahr 1900 rezipiert und bestätigt wurden. Der heute weitaus wichtigste Teilbereich der Genetik ist die Molekulargenetik, die in den 1940er Jahren begründet wurde und sich mit den molekularen Grundlagen der Vererbung befasst. Aus ihr ging die Gentechnik hervor, in der die Erkenntnisse der Molekulargenetik praktisch angewendet werden.

Etymologie

Das Adjektiv „genetisch“ wurde schon um 1800 von Johann Wolfgang von Goethe in dessen Arbeiten zur Morphologie der Pflanzen und in der Folgezeit häufig in der romantischen Naturphilosophie sowie in der deskriptiven Embryologie verwendet.[4] Anders als heute meinte man damit eine Methode („genetische Methode“) der Untersuchung und Beschreibung der Individualentwicklung (Ontogenese) von Organismen. Das Substantiv „Genetik“ gebrauchte erstmals William Bateson 1905 zur Bezeichnung der neuen Forschungsdisziplin.

In Deutschland wurde bis in die zweite Hälfte des 20. Jahrhunderts der Begriff „Erbbiologie“ synonym gebraucht, zumeist zur Unterscheidung der „Erbbiologie des Menschen“ (Humangenetik) von der allgemeinen Genetik. Der Begriff der „Humangenetik“ war dabei in Deutschland bereits um 1940 etabliert. Damit wurde ein Rückzug auf wissenschaftlich gebotene Grundlagenforschung angezeigt, während „Rassenhygiene“ angewandte Wissenschaft darstellte.[5] Nach 1945 verschwand der Begriff „Erbbiologie“ ebenso wie der Begriff „Rassenhygiene“ sukzessive aus dem wissenschaftlichen Sprachgebrauch.

Teilbereiche

Geschichte

Übersicht

Vorgeschichte

Schon seit der Antike versuchen die Menschen die Gesetzmäßigkeiten der Zeugung und die Ähnlichkeiten zwischen Verwandten zu erklären, und einige der im antiken Griechenland entwickelten Konzepte blieben bis in die Neuzeit gültig oder wurden in der Neuzeit wieder aufgegriffen.[6] So lehrte der griechische Philosoph Alkmaion um 500 v. Chr., dass die Zeugung der Nachkommen durch die Zusammenwirkung des männlichen und des weiblichen „Samens“ geschehe. Sein Postulat eines weiblichen Samens fand in der damaligen Naturphilosophie und später auch in der hippokratischen Medizin allgemeine Anerkennung. Davon abweichend behaupteten Hippon und Anaxagoras, dass nur der Mann zeugungsfähigen Samen bilde und dass der weibliche Organismus den Keim nur ernähre. Die Bildung des Samens erfolgte laut Alkmaion im Gehirn, von wo aus er durch die Adern in den Hoden gelange. Demgegenüber erklärten Anaxagoras und Demokrit, dass der gesamte Organismus zur Bildung des Samens beitrage, – eine Ansicht, die als Pangenesistheorie über 2000 Jahre später von Charles Darwin erneut vertreten wurde. Auch die Überlegungen des Anaxagoras, wonach alle Körperteile des Kindes bereits im Samen (Sperma) vorgebildet seien, traten als Präformationslehre in der Neuzeit wieder auf. In der Antike wurden diese frühen Lehren weitgehend abgelöst durch die Ansichten des Aristoteles, wonach das Sperma aus dem Blut entsteht und bei der Zeugung nur immateriell wirkt, indem es Form und Bewegung auf die durch den weiblichen Organismus bereitgestellte flüssige Materie überträgt.[7] Die Entwicklung des Keims beschrieb Aristoteles als Epigenese, wonach im Gegensatz zur Präformation die verschiedenen Organe nacheinander durch die Einwirkung des väterlichen Formprinzips ausgebildet werden. Neben der geschlechtlichen Zeugung kannte Aristoteles auch die Parthenogenese (Jungfernzeugung) sowie die (vermeintliche) Urzeugung von Insekten aus faulenden Stoffen.

Vererbung war bis in das 18. Jahrhundert ein juristischer Begriff und fand für natürliche Vorgänge keine Anwendung. Denn Ähnlichkeiten zwischen Verwandten wurden ausreichend über jeweils spezifische lokale Faktoren und die Lebensweise des Individuums erklärt: über das Klima, die Ernährung, die Art der Betätigungen usw. Wie gewisse Merkmale unter Nachkommen blieben auch diese Faktoren für die Nachkommen in der Regel konstant. Irreguläre Merkmale konnten dann entsprechend auf irreguläre Einflüsse bei der Zeugung oder der Entwicklung des Individuums zurückgeführt werden. Erst mit dem zunehmenden internationalen Verkehr und zum Beispiel der Anlage von exotischen Gärten wurde ein Wahrnehmungsraum dafür geschaffen, dass es vom Individuum und seinem jeweiligen Ort ablösbare, natürliche Gesetze geben müsse, die sowohl die Weitergabe von regulären als auch zuweilen eine Weitergabe von neu erworbenen Eigenschaften regeln.[3]

Präformistische Darstellung des Spermiums von Nicolas Hartsoeker, 1695

Der Begriff der Fortpflanzung oder Reproduktion, in dessen Kontext von Vererbung im biologischen Sinn gesprochen werden kann, kam erst gegen Ende des 18. Jahrhunderts auf.[8] In früheren Jahrhunderten galt die „Zeugung“ eines Lebewesens als ein Schöpfungsakt, der grundsätzlich eines göttlichen Eingriffs bedurfte und im Rahmen des Präformismus vielfach als Teilaspekt der Erschaffung der Welt betrachtet wurde. Dabei unterschied man die Zeugung durch den Samen (Sperma) im Mutterleib von der Urzeugung, durch welche niedere Tiere (etwa Würmer, Insekten, Schlangen und Mäuse) aus toter Materie hervorzugehen schienen.[9] Die „Samenzeugung“ betrachtete man als Eigenheit des Menschen und der höheren Tiere, welche zu ihrer Ausbildung eines Mutterleibs bedürfen. Erst gegen Ende des 17. Jahrhunderts setzte sich, vor allem aufgrund der Experimente Francesco Redis, die Einsicht durch, dass Würmer, Insekten und andere niedere Tiere nicht aus toter Materie entstehen, sondern von gleichartigen Tieren gezeugt werden. Nun betrachtete man die Zeugung nicht mehr als Schöpfungsakt, sondern verlegte diesen in die Zeit der Erschaffung der Welt, bei der, wie man annahm, alle zukünftigen Generationen von Lebewesen zugleich ineinandergeschachtelt erschaffen wurden. Die Zeugung war somit nur noch eine Aktivierung des längst vorhandenen Keims, der sich dann zu einem voll ausgebildeten Organismus entfaltete. Strittig war dabei, ob die Keime durch das weibliche oder durch das männliche Geschlecht weitergegeben werden, ob sie also im Ei oder im „Samentierchen“ eingeschachtelt sind. Beide Ansichten hatten ihre Anhänger (Ovisten und Animalkulisten), bis die Entdeckung der Jungfernzeugung bei der Blattlaus durch Charles Bonnet 1740 den Streit zugunsten der Ovisten entschied.[10]

Neben der sehr populären Präformationslehre, die 1625 durch Giuseppe degli Aromatari (1587–1660) ins Spiel gebracht worden war, gab es im 17. Jahrhundert auch renommierte Anhänger der an Aristoteles anknüpfenden Epigenesislehre, namentlich William Harvey und René Descartes.[11] Deren Ansichten galten jedoch als antiquiert und wurden als unwissenschaftlich verworfen, da sie immaterielle Wirkprinzipien voraussetzten, während der Präformismus rein mechanistisch gedacht werden konnte und zudem durch die Einführung des Mikroskops einen starken Auftrieb erfuhr.

Die Vorstellung der Präformation herrschte bis in das 19. Jahrhundert hinein vor, obwohl es durchaus Forschungsergebnisse gab, die nicht mit ihr in Einklang gebracht werden konnten.[12] Großes Erstaunen riefen die Versuche zur Regeneration bei Salamandern, Süßwasserpolypen und anderen Tieren hervor. Polypen kann man fein zerhacken, und jedes Teilstück entwickelt sich, wie Abraham Trembley 1744 beschrieb, innerhalb von zwei bis drei Wochen zu einem kompletten Tier. In den Jahren 1744 bis 1754 veröffentlichte Pierre-Louis Moreau de Maupertuis mehrere Schriften, in denen er aufgrund von Beobachtungen bei Tieren und Menschen, wonach beide Eltern Merkmale an ihre Nachkommen weitergeben können, die Präformationslehre kritisierte und ablehnte. Entsprechende Beobachtungen publizierte auch Joseph Gottlieb Kölreuter (1761), der als Erster Kreuzungen verschiedener Pflanzenarten studierte. Und Caspar Friedrich Wolff beschrieb 1759 minutiös die Entwicklung des Embryos im Hühnerei aus völlig undifferenzierter Materie. Trotz der Probleme, die derartige Forschungen aufwarfen, geriet die Präformationslehre jedoch erst im frühen 19. Jahrhundert durch die embryologischen Untersuchungen von Christian Heinrich Pander (1817) und Karl Ernst von Baer (1828) ins Wanken, bei denen diese die Bedeutung der Keimblätter aufklärten und allgemein gültige Gesetzmäßigkeiten der Embryogenese der Tiere aufzeigten.

Mit der Etablierung der von Matthias Jacob Schleiden (1838), Theodor Schwann (1839) und Rudolf Virchow (1858) entwickelten Allgemeinen Zelltheorie wurde deutlich, dass die Gründe für die Ähnlichkeit von Eltern und Nachkommen in der Zelle lokalisiert sein müssen.[13] Alle Organismen bestehen aus Zellen, Wachstum beruht auf der Vermehrung der Zellen durch Teilung, und bei der geschlechtlichen Fortpflanzung, die bei Vielzellern der Normalfall ist, vereinigen sich je eine Keimzelle beiderlei Geschlechts zu einer Zygote, aus welcher durch fortwährende Teilung und Differenzierung der neue Organismus hervorgeht.

Klassische Genetik

Die Gesetzmäßigkeiten der Vererbung blieben lange im Unklaren. Schon in den Jahren 1799 bis 1823 führte Thomas Andrew Knight – wie einige Jahrzehnte später Gregor Mendel – Kreuzungsexperimente mit Erbsen durch, bei denen er bereits die Erscheinungen der Dominanz und der Aufspaltung von Merkmalen beobachtete.[14] 1863 publizierte Charles Naudin (1815–1899) die Ergebnisse seiner Kreuzungsexperimente mit zahlreichen Pflanzengattungen, wobei er das sehr gleichartige Aussehen aller Pflanzen der ersten Tochtergeneration und die „extreme Verschiedenartigkeit der Formen“ in den folgenden Generationen konstatierte und damit weitere bedeutende Aspekte der fast zeitgleichen Erkenntnisse Mendels vorwegnahm, aber im Unterschied zu Mendel keine statistische Auswertung durchführte.[15]

Gregor Mendel

Der entscheidende Durchbruch gelang dann Mendel mit seinen 1856 begonnenen Kreuzungsversuchen, bei denen er sich auf einzelne Merkmale konzentrierte und die erhaltenen Daten statistisch auswertete. So konnte er die grundlegenden Gesetzmäßigkeiten bei der Verteilung von Erbanlagen auf die Nachkommen ermitteln, die heute als Mendelsche Regeln bezeichnet werden. Diese Entdeckungen, die er 1866 publizierte, blieben jedoch zunächst in der Fachwelt fast unbeachtet und wurden erst im Jahr 1900 von Hugo de Vries, Carl Correns und Erich Tschermak wiederentdeckt und aufgrund eigener Versuche bestätigt.

Einen radikalen Umbruch der Vorstellungen von der Vererbung brachte die Keimbahn- oder Keimplasmatheorie mit sich, die August Weismann in den 1880er Jahren entwickelte.[16] Schon seit dem Altertum galt es als selbstverständlich, dass Merkmale, welche die Eltern während ihres Lebens erworben haben, auf die Nachkommen übertragen werden können. Nach Jean-Baptiste de Lamarck, in dessen Evolutionstheorie sie eine bedeutende Rolle spielte, wird diese Ansicht heute als Lamarckismus bezeichnet. Doch auch Charles Darwin postulierte in seiner Pangenesistheorie, dass der ganze elterliche Organismus auf die Keimzellen einwirke – unter anderem sogar indirekt durch Telegonie. Weismann unterschied nun zwischen der Keimbahn, auf der die Keimzellen eines Organismus sich von der Zygote herleiten, und dem Soma als der Gesamtheit aller übrigen Zellen, aus denen keine Keimzellen hervorgehen können und von denen auch keine Einwirkungen auf die Keimbahn ausgehen. Diese Theorie war allerdings anfangs sehr umstritten.[17]

Hugo de Vries

Mit seinem zweibändigen Werk Die Mutationstheorie (1901/03) führte de Vries den bis dahin in der Paläontologie gebräuchlichen Begriff „Mutation“ in die Vererbungslehre ein. Nach seiner Auffassung handelte es sich bei Mutationen um umfassende, sprunghafte Veränderungen, durch welche eine neue Art entstehe. Dabei stützte er sich auf seine Studien an Nachtkerzen, bei denen eine „in allen ihren Organen“ stark veränderte Pflanze aufgetreten war, deren Merkmale sich als erbkonstant erwiesen und die er daher als neue Art (Oenothera gigas) beschrieb. (Später stellte sich heraus, dass „Oe. gigas“ im Unterschied zu den diploiden Ausgangspflanzen tetraploid war und somit – aus heutiger Sicht – der Sonderfall einer Genommutation (Autopolyploidie) vorlag.) Dieser Befund stand im Widerspruch zu der an Charles Darwin anschließenden Evolutionstheorie, die das Auftreten geringfügiger Veränderungen voraussetzte, und das war einer der Gründe, warum der „Mendelismus“ sich zeitweilig im Widerstreit mit dem damals noch nicht allgemein akzeptierten Darwinismus befand.

In den Jahren um die Jahrhundertwende untersuchten etliche Forscher die unterschiedlichen Formen der Chromosomen und deren Verhalten bei Zellteilungen. Aufgrund der Beobachtung, dass gleich aussehende Chromosomen paarweise auftreten, äußerte Walter Sutton 1902 als erster die Vermutung, dass dies etwas mit den ebenfalls gepaarten Merkmalen und deren „Spaltung“ in den Untersuchungen von Mendel und seinen Wiederentdeckern zu tun haben könne.[18] Im Anschluss daran formulierte Theodor Boveri 1904 die Chromosomentheorie der Vererbung, wonach die Erbanlagen an die Chromosomen gebunden sind und deren Verhalten bei der Meiose und Befruchtung den Mendelschen Regeln entspricht.[19]

Abbildung aus The Physical Basis of Heredity: Vererbung der Augenfarbe bei Drosophila

Eine sehr folgenreiche Entscheidung war die Wahl von Taufliegen als Versuchsobjekt durch die Arbeitsgruppe um Thomas Hunt Morgan im Jahre 1907, vor allem weil diese in großer Zahl auf kleinem Raum gehalten werden können und sich sehr viel schneller vermehren als die bis dahin verwendeten Pflanzen. So stellte sich bald heraus, dass es auch geringfügige Mutationen gibt, auf deren Grundlage allmähliche Veränderungen innerhalb von Populationen möglich sind (Morgan: For Darwin, 1909). Eine weitere wichtige Entdeckung machte Morgans Team etwa 1911, als man die schon 1900 von Correns publizierte Beobachtung, dass manche Merkmale meist zusammen vererbt werden (Genkopplung), mit Untersuchungen der Chromosomen verband und so zu dem Schluss kam, dass es sich bei den Koppelungsgruppen um Gruppen von Genen handelt, welche auf demselben Chromosom liegen. Wie sich weiter herausstellte, kann es zu einem Austausch von Genen zwischen homologen Chromosomen kommen (Crossing-over), und aufgrund der relativen Häufigkeiten dieser intrachromosomalen Rekombinationen konnte man eine lineare Anordnung der Gene auf einem Chromosom ableiten (Genkarte). Diese Erkenntnisse fasste Morgan 1921 in The Physical Basis of Heredity und 1926 programmatisch in The Theory of the Gene zusammen, worin er die Chromosomentheorie zur Gentheorie weiterentwickelte.

Diese Theorie war schon während ihrer allmählichen Herausbildung sehr umstritten. Ein zentraler Streitpunkt war die Frage, ob die Erbanlagen sich ausschließlich im Zellkern oder auch im Zytoplasma befinden. Vertreter der letzteren Ansicht waren u. a. Boveri, Correns, Hans Driesch, Jacques Loeb und Richard Goldschmidt. Sie postulierten, dass im Kern nur relativ geringfügige Erbfaktoren bis hin zu Artmerkmalen lokalisiert seien, während Merkmale höherer systematischer Kategorien (Gattung, Familie usw.) durch das Plasma vererbt würden. Der entschiedenste Vertreter der Gegenseite war Morgans ehemaliger Mitarbeiter Hermann Joseph Muller, der in The Gene as the Basis of Life (1929) die im Kern lokalisierten Gene als die Grundlage des Lebens überhaupt bezeichnete und die Bedeutung des Plasmas als sekundär einstufte.

Muller war es auch, der 1927 erstmals von der Erzeugung von Mutationen durch Röntgenstrahlung berichtete, wodurch die genetische Forschung nicht mehr darauf angewiesen war, auf spontan auftretende Mutationen zu warten. Der von de Vries, Morgan, Muller und Anderen vertretenen Ansicht der Zufälligkeit der Mutationen stand das u. a. von Paul Kammerer und Trofim Denissowitsch Lyssenko verfochtene Postulat gegenüber, dass Mutationen „gerichtet“ und qualitativ durch Umwelteinflüsse bestimmt seien.

Populationsgenetik

Nach dem allgemeinen Bekanntwerden von Mendels mathematisch exakter Beschreibung des dominant-rezessiven Erbgangs im Jahr 1900 wurde die Frage diskutiert, ob rezessive Merkmale in natürlichen Populationen allmählich verschwinden oder auf Dauer erhalten bleiben.[20] Hierzu fanden der deutsche Arzt Wilhelm Weinberg und der britische Mathematiker Godfrey Harold Hardy 1908 fast gleichzeitig eine Formel, die das Gleichgewicht dominanter und rezessiver Merkmale in Populationen beschreibt. Diese Entdeckung wurde jedoch unter Genetikern zunächst kaum beachtet. Erst 1917 führte Reginald Punnett das von ihm so genannte „Hardy-Gesetz“ in die Populationsforschung ein, was ein wichtiger Beitrag zur Begründung der Populationsgenetik als eigenständigem Forschungszweig in den 1920er Jahren war. Weinbergs Beitrag wurde sogar erst 1943 von Curt Stern wiederentdeckt, der die Formel daraufhin in „Hardy-Weinberg-Gesetz“ umbenannte.

Die Grundlagen der Populationsgenetik wurden parallel von Sewall Wright, Ronald A. Fisher und J. B. S. Haldane entwickelt.[21] Sie erkannten, dass Vererbungsvorgänge in der Natur sinnvollerweise auf der Ebene von Populationen zu betrachten sind, und formulierten dafür die theoretischen Grundlagen (Haldane: A Mathematical Theory of Natural and Artificial Selection, 1924–1932; Fisher: The Genetical Theory of Natural Selection, 1930; Wright: Evolution in Mendelian Populations, 1931).

Die Erbsubstanz

Seit 1889 (Richard Altmann) war bekannt, dass Chromosomen aus „Nucleinsäure“ und basischem Protein bestehen. Über deren Aufbau und Funktion konnte jedoch lange Zeit nur spekuliert werden. 1902 postulierten Emil Fischer und Franz Hofmeister, dass Proteine Polypeptide seien, also lange Ketten von Aminosäuren. Das war zu diesem Zeitpunkt allerdings noch sehr spekulativ. Als 1905 die ersten Analysen der Aminosäuren-Zusammensetzung von Proteinen publiziert wurden, erfassten diese lediglich ein Fünftel des untersuchten Proteins, und die Identifikation aller 20 proteinogenen Aminosäuren zog sich bis 1935 hin. Dagegen war bei der Nukleinsäure schon 1903 klar (Albrecht Kossel), dass sie neben Zucker und Phosphat lediglich fünf verschiedene Nukleinbasen enthält. Erste Analysen der Basenzusammensetzung durch Hermann Steudel ergaben 1906, dass die vier hauptsächlich vorhandenen Basen zu annähernd gleichen Anteilen enthalten sind. Daraus schloss Steudel (1907), dass die Nukleinsäure „ein relativ einfach gebauter Körper sei“[22], dem man keine anspruchsvollen Funktionen beimessen könne. Dies etablierte sich als Lehrmeinung, die bis in die 1930er Jahre gültig blieb, und auf dieser Grundlage betrachtete man nicht die Nukleinsäure(n), sondern die Proteine als „Erbsubstanz“.

Zu der Einsicht, dass es sich gerade umgekehrt verhält und die Nukleinsäure DNA als Erbsubstanz angesehen werden muss, führten die Experimente der Arbeitsgruppe von Oswald Avery zur Transformation von Pneumokokken (1944) und das Hershey-Chase-Experiment von 1952 mit Bakteriophagen. Außerdem zeigte Erwin Chargaff 1950, dass die vier Nukleotide, aus denen die DNA besteht, nicht zu gleichen, sondern zu paarweise gleichen Anteilen enthalten sind. Zusammen mit Röntgenstrukturanalyse-Daten von Rosalind Franklin war das die Grundlage für die Entwicklung des Doppelhelix-Strukturmodells der DNA durch James Watson und Francis Crick 1953.

Literatur

  • François Jacob: La logique du vivant: Une histoire de l'hérédité. Gallimard, Paris 1971, deutsch: Die Logik des Lebenden. Fischer, Frankfurt am Main 1972, Neuausgabe 2002
  • Wilfried Janning, Elisabeth Knust: Genetik. 2. Aufl., Thieme, Stuttgart 2008
  • William S. Klug, Michael R. Cummings, Charlotte A. Spencer: Genetik. 8. Aufl., Pearson Studium, München 2007
  • Katharina Munk (Hrsg.): Taschenlehrbuch Biologie: Genetik, Thieme, Stuttgart 2010
  • Hans-Jörg Rheinberger, Staffan Müller-Wille: Vererbung – Geschichte und Kultur eines biologischen Konzepts, Fischer, Frankfurt am Main 2009

Weblinks

Einzelnachweise

  1. Vgl. genetikós in: Henry George Liddell, Robert Scott, A Greek-English Lexicon, at Perseus
  2. Vgl. génesis in: Henry George Liddell, Robert Scott, A Greek-English Lexicon, at Perseus
  3. 3,0 3,1 Hans-Jörg Rheinberger, Staffan Müller-Wille: Vererbung. Geschichte und Kultur eines biologischen Konzepts. Frankfurt am Main 2009
  4. Ilse Jahn, Rolf Löther, Konrad Senglaub (Hrsg.): Geschichte der Biologie, 2. Aufl., VEB Gustav Fischer Verlag, Jena 1985, S. 284 und 413
  5. Peter Weingart, Jürgen Kroll, Kurt Bayertz: Rasse, Blut und Gene. Geschichte der Eugenik und Rassenhygiene in Deutschland. Suhrkamp, Frankfurt am Main 1992, S. 557 f.
  6. Jahn et al., S. 56–59
  7. Jahn et al., S. 68–71
  8. François Jacob: Die Logik des Lebenden – Von der Urzeugung zum genetischen Code. Frankfurt am Main 1972, S. 27 f.
  9. Jacob, S. 32 f.
  10. Jacob, S. 72
  11. Jahn et al., S. 218–220 und 231
  12. Jacob, S. 74–79; Jahn et al., S. 232–249
  13. Jacob, S. 123–139
  14. Jahn et al., S. 417 und 691
  15. Jahn et al., S. 418 f.
  16. Jacob, S, 232–235
  17. Jahn et al., S. 410–412
  18. Jahn et al., S. 463
  19. Jahn & al., S. 463 f.
  20. Jahn et al., S. 468 f.
  21. Jahn et al., S. 482–484
  22. H. Steudel, Hoppe-Seyler's Z. Physiol. Chem. 53 (1907), S. 18, zitiert nach Peter Karlson: 100 Jahre Biochemie im Spiegel von Hoppe-Seyler's Zeitschrift für Physiologische Chemie, dito Bd. 358 (1977), S. 717-752, Zitat S. 747
  23. Louisa A. Stark, Kevin Pompei: Making Genetics Easy to Understand. In: Science, Band 327, Nr. 5965, S. 538–539, doi:10.1126/science.1183029
Dieser Artikel basiert ursprünglich auf dem Artikel Genetik aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.