Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Halbton

Aus Jewiki
Zur Navigation springen Zur Suche springen
Dieser Artikel behandelt den musikalischen Begriff. Zu weiteren Bedeutungen siehe Halbton (Begriffsklärung).
Diatonische Intervalle
Prime
Sekunde
Terz
Quarte
Quinte
Sexte
Septime
Oktave
None
Dezime
Undezime
Duodezime
Tredezime
Halbton/Ganzton
Besondere Intervalle
Mikrointervall
Komma
Diësis
Limma
Apotome
Ditonus
Tritonus
Wolfsquinte
Maßeinheiten
Cent
Millioktave
Oktave
Savart

Halbton (lateinisch semitonium, auch griech./lat. hemitonium) bezeichnet in der Musik das kleinste Intervall des heute verbreiteten zwölfstufigen Tonsystems. In Ausnahmefällen wird die Bezeichnung auch auf einzelne Töne angewendet (siehe unten).

Halbton als Intervall

Die Intervallbezeichnung Halbton ersetzt in griffiger Kurzform die vollständigeren Bezeichnungen Halbtonschritt oder Halbtonabstand.

Die Musiktheorie unterscheidet zwischen dem diatonischen Halbton (kleine Sekunde, z. B. g→as) und dem chromatischen Halbton (übermäßige Prime, z. B. as→a), die zusammen einen Ganzton ergeben. Selten findet der enharmonische Halbton (doppelt verminderte Terz, z. B. fis→asas) Erwähnung.

Je nach Stimmung und musikalischem Zusammenhang sind die einzelnen Halbtöne schwach hörbar verschieden.

Gleichstufig temperierter Halbton

Im gleichstufig temperierten Tonsystem entspricht der Halbton einem Zwölftel der Oktave. Diese Bedeutung wurde bereits von Aristoxenos vorweggenommen, indem er die Oktave in sechs gleiche Ganztöne teilte und den Halbton als die Hälfte eines Ganztons definierte.

Die rechnerisch exakte Zwölftelung der Oktave ergibt für den temperierten Halbton ein Frequenzverhältnis (Proportion) von Cent, da dieser Wert zwölfmal mit sich selbst multipliziert das Frequenzverhältnis einer Oktave (2/1) ergibt.

Halbtöne der pythagoreischen Stimmung

In pythagoreischen Tonsystemen tritt aufgrund der reinen Quinten (Proportion 32) kein (aus dem unteren Bereich der Obertonreihe stammender) „natürlicher“ Halbton ( 1615) auf, sondern das Intervall mit der Proportion Cent,[1] das bei PhilolaosDiesis“, bei EuklidLeimma“, seit der Spätantike auch als Halbton bezeichnet wurde.

Ohne praktische Verwendung wurde auch als Halbton die Apotome ( Cent) bezeichnet: die Differenz zwischen Ganzton ( 98) und Leimma ( 256243). Die Tonbuchstaben und die Notenschrift unterscheiden diese Intervalle klar: Das Leimma ist eine kleine Sekunde c-h, die Apotome ein chromatischer Schritt, nämlich die übermäßige Prime cis→c.

Den Unterschied hebt erst die gleichstufige Stimmung auf, da sie das pythagoreische Komma (= Apotome-Leimma) zum Verschwinden bringt und dadurch eine enharmonische Verwechslung ermöglicht.

Kleiner und großer Halbton der harmonisch-reinen Stimmung

Die Einbeziehung der reinen großen Terz mit der Proportion 54 in der seit der Renaissance aufkommenden reinen Stimmung änderte die Größenordnung der Halbtöne. Der diatonische Halbton, der große Halbton mit der Proportion kann nun dem unteren Bereich der Obertonreihe zugeordnet werden.

Wegen der Existenz von zwei Ganztönen gibt es auch zwei chromatische Halbtöne (übermäßige Primen), die kleinen Halbtöne mit den Proportionen und .

Beispiel:

Ccisdesddisese.gif
Name des Tones C CIS D DIS E
Frequenz 264 278,4 297 309,3 330
In Cent (gerundet) 0 92 204 275 386
Halbton in Cent 92 112 71 112
Name des Tones C DES D ES E
Frequenz 264 281,6 297 316,8 330
In Cent (gerundet) 0 112 204 316 386
Halbton in Cent 112 92 112 71
Grifftabelle nach Peter Prelleur The Art of Playing on the Violin (1730)

Noch heute gilt bei Intonationen von a-cappella-Chören die folgende Faustregel (Regel des Weißenburger Kantors Maternus Beringer, 1610).[2]

„Halbtöne auf derselben Linie im Notensystem (die chromatischen) sind als kleiner Halbton (semitonus minor) zu intonieren. Halbtöne auf benachbarten Linien (die diatonischen) aber als großer Halbton (semitonus major).“

Wie man der Frequenztabelle und der Grifftabelle von Peter Prelleur entnehmen kann, sind die mit einem Kreuz bezeichneten Töne CIS, DIS usw. tiefer als die mit einem b bezeichneten DES, ES usw.

1csidesusw.gif

Diese harmonische Intonation steht im Gegensatz zur expressiven Intonation, bei der die Leittöne (Cis Leitton zu D, Dis zu E, Des zu C, Es zu D und so weiter) enger gespielt werden.

Musikbeispiele

Musikbeispiel 1: Akkorde hier nach „Selig seid ihr“ EKG Württemberg Nr. 651

Selig seid ihr (EKG Wü651).gif

Audio-Datei / Hörbeispiel Anhören in reiner Stimmung?/i

Audio-Datei / Hörbeispiel Anhören in mitteltöniger Stimmung?/i

Audio-Datei / Hörbeispiel Anhören in gleichstufiger Stimmung?/i

Tonschritt im Bass in reiner Stimmung in mitteltöniger Stimmung in gleichstufiger Stimmung
C-Cis 71 Cent 76 Cent 100 Cent
Cis-D 112 Cent 112 Cent 100 Cent

Musikbeispiel 2: Passus duriusculus. Akkorde hier nach W.A. Mozart „Misericordias Domini“ d-Moll (KV 205 a).

Duriusculus harmonien.gif Audio-Datei / Hörbeispiel Anhören in reiner Stimmung?/i Die Halbtonschritte
im Bass betragen
in der reinen Stimmung

c → h: 112 Cent
h → b 92 Cent
b → a 112 Cent
a → as 71 Cent
as → g 112 Cent

Tabellarische Übersicht

Als ein Hundertstel des gleichstufigen Halbtons wurde gegen Ende des 19. Jahrhunderts die Intervalleinheit Cent festgelegt. Sie erlaubt einen besonders klaren Größenvergleich bei den verschiedenen Halbtönen:

Die Halbtöne der pythagoreischen Tonleiter

bzw. …
Intervall Frequenzverhältnis in Cent Beispiel
Ganzton 98 204 Cent C-D
Halbton Leimma 256243 90 Cent E-F
Halbton Apotome 21872048 114 Cent B-H

Die Apotome ist ein rein rechnerisches Intervall. In der mittelalterlichen Musik werden nie die beiden Töne B und H gleichzeitig verwendet.

Die Halbtöne der reinen Tonleiter

Intervall Frequenzverhältnis in Cent Beispiel
großer Ganzton 98 204 Cent C-D
kleiner Ganzton 109 182 Cent D-E
diatonischer Halbton 1615 112 Cent E-F
großer chromatischer Halbton 135128 92 Cent C-Cis
kleiner chromatischer Halbton 2524 71 Cent B-H

Die Halbtöne der 1/4-Komma mitteltönigen Tonleiter

Die Frequenzverhältnisse sind – bis auf die Oktave ( 21) und große Terz ( 54) – irrational. Deshalb wird die Intervallgröße in Cent angegeben.

C – 193 Cent – D – 193 Cent – E – 117 Cent – F – 193 Cent – G – 193 Cent – A – 193 Cent – H – 117 Cent – C
Intervall Größe in Cent Beispiel
Ganzton 193 Cent C-D
diatonischer Halbton 117 Cent E-F
chromatischer Halbton 76 Cent C-Cis

Die Halbtöne der gleichstufigen Tonleiter

C – 200 Cent – D – 200 Cent – E – 100 Cent – F – 200 Cent – G – 200 Cent – A – 200 Cent – H – 100 Cent – C
Intervall Größe in Cent Beispiel
Ganzton 200 Cent C-D
diatonischer Halbton 100 Cent E-F
chromatischer Halbton 100 Cent C-Cis

Zusammenfassung

Intervall Proportion Größe in Cent
Zwölfter Teil der Oktave 100 Cent
Leimma 256243 ≈90 Cent
Apotome 21872048 ≈114 Cent
diatonischer Halbton 1615 ≈112 Cent
großer chromatischer Halbton 135128 ≈92 Cent
kleiner chromatischer Halbton 2524 ≈71 Cent
diatonischer mitteltöniger Halbton ≈117 Cent
chromatischer mitteltöniger Halbton ≈76 Cent
Vincenzo-Galilei-Halbton-Näherung 1817 ≈99 Cent

Chromatische Tonleiter

Eine zwölfstufige Tonleiter ausschließlich aus Halbtonschritten wird chromatische Tonleiter genannt. Darin lösen sich der diatonische Halbtonschritt = kleine Sekunde und der chromatische Halbtonschritt = übermäßige Prime folgerichtig ab. Im folgenden Beispiel der von c1 ausgehenden chromatischen Skala sind die chromatischen Halbtonschritte daran zu erkennen, dass Ausgangs- und Zielton auf gleich hohen Positionen im Liniensystem notiert sind, während bei diatonischen Halbtonschritten die entsprechenden Notenpositionen unterschiedlich sind. Chromatic scale full octave ascending and descending on C.PNG

Hörbeispiele

Halbton als Einzelton

Gelegentlich wird der Ausdruck Halbton auch auf einzelne Töne bezogen.

  • In der Tonwort-Methode von Carl Eitz wird die Bezeichnung Halbton für eine einzelne Stufe der chromatischen Tonleiter verwendet, während die Stammtöne als Ganztöne bezeichnet werden. Die Ganztöne bilden im Rahmen dieser Ausdrucksweise eine Teilmenge der gesamten Halbtonmenge.
  • In der Vergangenheit wurden auch gelegentlich (in heute unüblicher Weise) die Stammtöne (weiße Tasten der Klaviatur) als Ganztöne und deren chromatische Varianten (schwarze Tasten der Klaviatur) als Halbtöne bezeichnet. Johann Sebastian Bach zielt offensichtlich auf diese Bedeutung ab, wenn er auf dem Titelblatt seines Wohltemperierten Klaviers von „Præludia und Fugen durch alle Tone und Semitonia“ spricht. Klavierbauer pflegen diesen Sprachgebrauch noch heute (2018).[3]

Siehe auch

Weblinks

Wiktionary: Halbton – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Dieser Halbtonschritt ergibt sich als Quarte − 2 Ganztöne. Das Frequenzverhältnis errechnet sich demnach zu 43 × 89 × 89 = 256243 (siehe pythagoreische Stimmung).
  2. Diese Regel wurde in vielen alten Gesangsschulen formuliert. Hier nach Maternus Beringer: Musicae, das ist der freyen lieblichen Singkunst. Georg Leopold Fuhrmann, Nürnberg 1610 (Nachdruck: Bärenreiter, Kassel 1974).
  3. https://www.pianoteile-baumgaertel.de/?pgid=12QQ3YOLC6OGRSY3SGN12F9TM&ecskey=t9tg7fqhusq07f3fdhigiphbj1
Dieser Artikel basiert ursprünglich auf dem Artikel Halbton aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.