Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Leere Menge
Die leere Menge ist ein grundlegender Begriff aus der Mengenlehre. Man bezeichnet damit die Menge, die keinerlei Elemente enthält. Da Mengen über ihre Elemente charakterisiert werden und zwei Mengen genau dann gleich sind, wenn sie dieselben Elemente haben (siehe Extensionalitätsaxiom der Mengenlehre), gibt es nur eine einzige leere Menge.
Die leere Menge ist nicht mit einer Nullmenge zu verwechseln, welche eine Menge mit dem Maß null ist. Eine solche Menge kann sogar unendlich viele Elemente enthalten.
Notation und Codierung
Als Zeichen für die leere Menge hat sich das von Nicolas Bourbaki verwendete Zeichen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varnothing} (ein durchgestrichener Kreis) weitgehend durchgesetzt. Eine typographische Variante davon ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset} (ein durchgestrichenes schmales Oval). Vor allem in der Schulmathematik wird die leere Menge auch gern durch eine leere Mengenklammer dargestellt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{\right\}} . Dieses Zeichen wirkt einem Missverständnis entgegen: Die leere Menge ist nicht nichts, sondern eine Menge, die nichts enthält.
Das ∅ ist in HTML als ∅ bzw. als ∅ kodiert; in Unicode als U+2205 und in LaTeX als \varnothing. Alternativ gibt es in LaTeX das Symbol Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset} , das durch \emptyset erzeugt wird. Nicht verwechselt werden sollte es mit dem ähnlich aussehenden Durchmesserzeichen ⌀, das als U+2300 kodiert ist, oder dem skandinavischen Buchstaben Ø (U+00D8 bzw. U+00F8).
Leermengenaxiom
Ein Axiom, das die Existenz einer leeren Menge fordert, wurde erstmals 1907 von Ernst Zermelo in der Zermelo-Mengenlehre formuliert. Es wurde später in die Zermelo-Fraenkel-Mengenlehre ZF und andere axiomatische Mengenlehren übernommen. Dieses Leermengenaxiom lautet verbal: Es gibt eine Menge, die keine Elemente enthält. Die präzise logische Formel lautet:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \exist M\colon \forall X\colon \lnot (X \in M)}
Die Eindeutigkeit der leeren Menge folgt aus dem Extensionalitätsaxiom. Die Existenz der leeren Menge folgt mit dem Aussonderungsaxiom aus der Existenz irgendeiner anderen Menge. In ZF, das im Unendlichkeitsaxiom die Existenz einer Menge fordert, ist das Leermengenaxiom damit entbehrlich.
Eigenschaften
- Die leere Menge ist Teilmenge jeder Menge:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset \subseteq A }
- Jede Menge bleibt bei Vereinigung mit der leeren Menge unverändert:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset \cup A = A }
- Für jede Menge ist der Durchschnitt mit der leeren Menge die leere Menge:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset \cap A = \emptyset }
- Für jede Menge ist das kartesische Produkt mit der leeren Menge die leere Menge:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset \times A =\emptyset }
- Die einzige Teilmenge der leeren Menge ist die leere Menge:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \subseteq \emptyset \Rightarrow A = \emptyset }
- Daraus folgt, dass die Potenzmenge der leeren Menge genau ein Element enthält, nämlich die leere Menge selbst:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal P(\emptyset) = \left\{ \emptyset \right\} }
- Für jede widersprüchliche Aussage oder nicht erfüllbare Eigenschaft Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E(x)}
gilt:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset = \left\{ x \mid E(x) \right\} } , z. B. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset = \left\{ x \mid x \in \mathbb Z, x+1=x+2 \right\} }
- Damit ist die leere Menge insbesondere die Lösungsmenge einer Gleichung oder Ungleichung, die keine Lösung besitzt.
- Jede Existenzaussage über Elemente der leeren Menge, etwa
- „Es existiert ein x aus Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset} , sodass gilt…“
- ist falsch, denn es gibt kein Element, das die Bedingung erfüllen könnte.
- Jede All-Aussage über Elemente der leeren Menge, etwa
- „Für alle Elemente der Menge Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset} gilt…“
- ist wahr, denn es gibt kein Element, für das die fragliche Eigenschaft nachgeprüft werden müsste.
- Sei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} eine Menge und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon A \to \emptyset} eine Abbildung. Dann ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} die leere Menge.
- Die leere Menge ist die einzige Basis des Nullvektorraums.
- Die leere Menge ist definitionsgemäß in jedem topologischen Raum zugleich abgeschlossen und offen.
- Ebenfalls per Definition ist die leere Menge in jedem Maßraum eine messbare Menge und besitzt das Maß 0.
Die leere Funktion
Die leere Menge ist insbesondere eine leere Menge geordneter Paare und damit eine Abbildung. Daher gibt es für jede Menge Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} genau eine Abbildung
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon \emptyset \to A} ,
nämlich Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f = \emptyset} , die sogenannte leere Abbildung oder leere Funktion. Das kann man auch so formulieren:
- Die leere Menge ist das Anfangsobjekt in der Kategorie der Mengen.
Im Gegensatz dazu gibt es nur für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\emptyset} eine Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \rightarrow \emptyset} .
Kardinalität der leeren Menge
Die leere Menge ist die einzige Menge mit der Kardinalität (Mächtigkeit) Null:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\vert \emptyset \right\vert = 0.}
Sie ist daher auch der einzige Repräsentant der Kardinalzahl 0 und der Ordinalzahl 0. Insbesondere ist sie eine endliche Menge.
Die leere Menge ist auch die einzige Menge, die durch ihre Kardinalität bereits eindeutig bestimmt ist. (Für jede andere Kardinalzahl ist die Klasse der Mengen dieser Kardinalität sogar echt.)
Literatur
- Oliver Deiser: Einführung in die Mengenlehre. Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo. 3. Auflage. Springer Verlag, Berlin, Heidelberg 2010, ISBN 978-3-642-01444-4, doi:10.1007/978-3-642-01445-1.
Weblinks
Axiome: Extensionalitätsaxiom | Fundierungsaxiom | Leermengenaxiom | Paarmengenaxiom | Vereinigungsaxiom | Potenzmengenaxiom | Unendlichkeitsaxiom | Auswahlaxiom
Axiomenschemata: Aussonderungsaxiom | Ersetzungsaxiom
Dieser Artikel basiert ursprünglich auf dem Artikel Leere Menge aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |