Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Quantencomputer

Aus Jewiki
Zur Navigation springen Zur Suche springen
Datei:QuantumAI.jpg
Quantenprozessor

Ein Quantenprozessor bzw. Quantencomputer ist ein Prozessor, der die Gesetze der Quantenmechanik nutzt. Im Unterschied zum klassischen Computer arbeitet er nicht auf der Basis elektrischer, sondern quantenmechanischer Zustände. Hierbei sind erstens das Superpositionsprinzip (d. h. die quantenmechanische Kohärenz, analog zu den Kohärenzeffekten, siehe z. B. Holographie, in der sonst inkohärenten Optik) und zweitens die Quantenverschränkung von Bedeutung.

Theoretische Studien zeigen, dass unter Ausnutzung dieser Effekte bestimmte Probleme der Informatik, z. B. die Suche in extrem großen Datenbanken (siehe Grover-Algorithmus) und die Faktorisierung großer Zahlen (siehe Shor-Algorithmus) effizienter gelöst werden können als mit klassischen Computern. Dies würde es ermöglichen, die Berechnungszeit für viele mathematische und physikalische Problemstellungen deutlich zu verringern.

Der Quantencomputer war lange ein überwiegend theoretisches Konzept. Es gab verschiedene Vorschläge, wie ein Quantencomputer realisiert werden könnte, in kleinem Maßstab wurden einige dieser Konzepte im Labor erprobt und Quantencomputer mit wenigen Qubits realisiert. Der Rekord lag im November 2021 bei 127 Qubits für den Prozessor.[1] Neben der Anzahl der Qubits ist aber auch zum Beispiel eine geringe Fehlerquote beim Rechnen und Auslesen wichtig und wie lange die Zustände in den Qubits fehlerfrei aufrechterhalten werden können.

Seit 2018 investieren viele Regierungen und Forschungsorganisationen sowie große Computer- und Technologiefirmen weltweit in die Entwicklung von Quantencomputern, die von vielen als eine der entstehenden Schlüsseltechnologien des 21. Jahrhunderts angesehen werden.[2][3][4]

Mögliche Anwendungsgebiete

Bitte Belege für diesen Artikel bzw. den nachfolgenden Abschnitt nachreichen!

Dort, wo klassische Supercomputer an der Komplexität bestimmter Aufgaben scheitern, könnten Quantencomputer eine Lösung sein:

  • Optimierungsaufgaben (Finanzwirtschaft, Logistik);
  • Simulationen (neue chemische Stoffe finden, wie zum Beispiel für Biotechnologie bzw. Medikamente; oder neue Werkstoffe finden, zum Beispiel für neuartige Akkumulatoren);
  • Kryptographie;
  • energetische Optimierungen.

Technologie

Qubits

Zur Definition des Begriffes Qubit:
Beim Quantencomputing arbeitet man mit allgemeinen Zuständen, die in bestimmter Weise durch Überlagerung der beiden farbig gekennzeichneten Basiszustände entstehen, wogegen beim klassischen Computing nur die Basiszustände selbst auftreten.

In einem klassischen Computer werden sämtliche Informationen in Bits dargestellt. Physikalisch wird ein Bit dadurch realisiert, dass ein elektrisches Potential entweder oberhalb eines bestimmten Pegels liegt oder unterhalb.

Auch in einem Quantencomputer wird Information in der Regel binär dargestellt. Dazu bedient man sich eines physikalischen Systems mit zwei orthogonalen Basiszuständen eines zweidimensionalen komplexen Raums, wie er in der Quantenmechanik auftritt. In der Dirac-Notation wird der eine Basiszustand durch den quantenmechanischen Zustandsvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |0\rangle} repräsentiert, der andere durch den Zustandsvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | 1\rangle} . Bei diesen quantenmechanischen Zwei-Niveau-Systemen kann es sich z. B. um den Spinvektor eines Elektrons handeln, der entweder nach „oben“ oder nach „unten“ zeigt. Andere Implementierungen nutzen das Energieniveau in Atomen oder Molekülen oder die Flussrichtung eines Stroms in einem ringförmigen Supraleiter. Oft werden nur zwei Zustände aus einem größeren Hilbertraum des physikalischen Systems ausgewählt, zum Beispiel die zwei niedrigsten Energieeigenzustände eines eingefangenen Ions. Ein solches quantenmechanisches Zweizustandssystem wird Qubit (Quanten-Bit) genannt.

Eine Eigenschaft quantenmechanischer Zustandsvektoren ist, dass diese eine Überlagerung anderer Zustände sein können. Dies wird auch Superposition genannt. Im konkreten Fall bedeutet dies, dass ein Qubit nicht entweder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |0\rangle} oder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |1\rangle} sein muss, wie dies für die Bits des klassischen Computers der Fall ist. Vielmehr ergibt sich der Zustand eines Qubits in dem oben erwähnten zweidimensionalen komplexen Raum mit: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix};\quad |1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix} } Eine Superposition Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert\Psi\rangle} ist dann allgemein eine komplexe Linearkombination aus diesen orthonormalen Basisvektoren mit:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert\Psi\rangle = c_0 \vert 0\rangle + c_1 \vert 1\rangle = \begin{pmatrix} c_0 \\ c_1 \end{pmatrix};\quad |c_0|^2 + |c_1|^2 = 1; \quad c_0,c_1 \in \mathbb{C}} ,

wobei wie in der kohärenten Optik beliebige Überlagerungszustände zugelassen sind. Der Unterschied zwischen klassischem und quantenmechanischem Computing ist also analog dem zwischen inkohärenter bzw. kohärenter Optik (im ersten Fall werden Intensitäten addiert, im zweiten direkt die Feldamplituden, wie etwa in der Holographie).

Zur Normierung fordert man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |c_0|^2+|c_1|^2 = 1} . Ohne Beschränkung der Allgemeinheit kann Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0} reell und nichtnegativ gewählt werden. Das Qubit liest man in der Regel aus, in dem man eine in der Basis Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{|0\rangle,|1\rangle\}} diagonale und nicht entartete Observable[Anm. 1] misst, also z. B. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=|1\rangle\langle1|} . Die Wahrscheinlichkeit dafür, als Resultat dieser Messung am Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert\Psi\rangle} den Wert 0 zu erhalten, beträgt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(0) = |\langle 0\vert\Psi\rangle|^2 =|c_0|^2} und die für das Resultat 1 entsprechend Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(1) = |c_1|^2=1-P(0)} . Dieses probabilistische Verhalten darf nicht so interpretiert werden, dass sich das Qubit mit einer bestimmten Wahrscheinlichkeit im Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 0\rangle} und mit einer anderen Wahrscheinlichkeit im Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\vert 1\right\rangle} befindet, während andere Zustände nicht zugelassen sind. Ein solches ausschließendes Verhalten könnte man auch mit einem klassischen Computer erzielen, der einen Zufallsgenerator verwendet, um beim Auftreten von überlagerten Zuständen zu entscheiden, ob er mit 0 oder 1 weiterrechnet. In der statistischen Physik, die im Gegensatz zur Quantenmechanik inkohärent ist, wird solches ausschließendes Verhalten betrachtet. Für die Quantenrechnung ist hingegen die kohärente Überlagerung der verschiedenen Basiszustände, die relative Phase zwischen den verschiedenen Komponenten der Überlagerung und im Verlauf der Rechnung die Interferenz zwischen ihnen von entscheidender Bedeutung.

Quantenregister, Verschränkung

Wie beim klassischen Computer fasst man mehrere Qubits zu Quantenregistern zusammen. Der Zustand eines Qubit-Registers ist dann gemäß den Gesetzen der Vielteilchen-Quantenmechanik ein Zustand aus einem Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^N} -dimensionalen Hilbertraum, dem Tensorprodukt der Zustandstäume der einzelnen Qubits. Eine mögliche Basis dieses Vektorraums ist die Produktbasis über der Basis Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 0\rangle, \vert 1\rangle} . Für ein Register aus zwei Qubits erhielte man demnach die Basis Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 00\rangle, \vert 01\rangle, \vert 10\rangle, \vert 11\rangle} . Der Zustand des Registers kann also eine beliebige Superposition dieser Basiszustände sein, hat also die Form

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi :=\sum_{i_1,\dots,i_N}c_{i_1\dots i_N}\,\vert i_1 i_2\dots i_N\rangle} ,

mit beliebigen komplexen Zahlen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_{i_1\dots i_N}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i_1, i_2,\dotsc, i_N \in \{0,1\} } , während bei klassischen Computern nur die Basiszustände selbst vorkommen.

Die Zustände eines Quantenregisters lassen sich nicht immer aus den Zuständen unabhängiger Qubits zusammensetzen: Beispielsweise kann der Zustand

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi := \frac{1}{\sqrt{2}} \left(\vert 01\rangle + \vert 10\rangle\right)}

nicht in ein Produkt aus einem Zustand für das erste und einem Zustand für das zweite Qubit zerlegt werden. Man nennt einen derartigen Zustand daher auch verschränkt (in der englischsprachigen Literatur spricht man von entanglement). Das Gleiche gilt für den von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi} verschiedenen Zustand

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi^\prime := \frac{1}{\sqrt{2}} \left(\vert 01\rangle - \vert 10\rangle\right)} .[Anm. 2]

Diese Verschränkung ist ein Grund, warum Quantencomputer effizienter als klassische Computer sein können, d. h., dass sie prinzipiell bestimmte Probleme schneller als klassische Computer lösen können: Um den Zustand eines klassischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} -Bit-Registers darzustellen, benötigt man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} Bits an Information. Der Zustand des Quanten-Registers ist aber ein Vektor aus einem Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^N} -dimensionalen Vektorraum, so dass zu dessen Darstellung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^N} komplexwertige Koeffizienten benötigt werden. Bei großem Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} ist die Zahl Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^N} viel größer als Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} selbst.

Das Superpositionsprinzip wird oft so dargestellt, dass ein Quantencomputer in einem Quantenregister aus Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} Qubits gleichzeitig alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^N} Zahlen von 0 bis Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {2^N}-1} speichern könnte. Diese Vorstellung ist irreführend. Da eine am Register vorgenommene Messung stets genau einen der Basiszustände auswählt, lässt sich unter Anwendung des sogenannten Holevo-Theorems zeigen, dass der maximale zugängliche Informationsgehalt eines Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} -Qubit-Registers wie der eines klassischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} -Bit-Registers genau Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} Bit beträgt.[5][Anm. 3]

Es ist dennoch korrekt, dass das Superpositionsprinzip eine Parallelität in den Rechnungen erlaubt, die über das hinausgeht, was in einem klassischen Parallelrechner passiert. Der zentrale Unterschied zum klassischen Parallelrechner ist, dass die durch das Superpositionsprinzip ermöglichte Parallelität nur durch Interferenz ausgenutzt werden kann. Für manche Probleme kann mit Quantenalgorithmen eine im Vergleich zu klassischen Verfahren stark reduzierte Laufzeit erzielt werden.

Quantengatter

Beim klassischen Computer werden durch Logikgatter (englisch Gates) elementare Operationen auf den Bits durchgeführt. Mehrere Gatter werden zu einem Schaltnetz verbunden, das dann komplexe Operationen wie das Addieren zweier Binärzahlen durchführen kann. Die Gatter werden durch physikalische Bauelemente wie Transistoren realisiert und die Information als elektrisches Signal durch diese Bauelemente geleitet.

Berechnungen auf einem Quantencomputer laufen grundsätzlich anders ab: Ein Quantengatter (englisch Quantum Gate) ist kein technischer Baustein, sondern stellt eine elementare physikalische Manipulation eines oder mehrerer Qubits dar. Wie genau so eine Manipulation aussieht, hängt von der tatsächlichen physikalischen Natur des Qubits ab. So lässt sich der Spin eines Elektrons durch eingestrahlte Magnetfelder beeinflussen, der Anregungszustand eines Atoms durch Laserpulse. Obwohl also ein Quantengatter kein elektronischer Baustein, sondern eine im Verlauf der Zeit auf das Quantenregister angewendete Aktion ist, beschreibt man Quantenalgorithmen mit Hilfe von Schaltplänen, vgl. hierzu den Artikel Liste der Quantengatter.

Formal ist ein Quantengatter eine unitäre Operation Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} , die auf den Zustand des Quanten-Registers wirkt:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi \mapsto U\cdot \Psi.}

Ein Quantengatter kann daher als unitäre Matrix geschrieben werden. Ein Gatter, welches den Zustand eines Qubits umdreht (negiert), würde im Falle eines zweidimensionalen Zustandsraums der folgenden Matrix entsprechen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U = \begin{pmatrix}0&1\\1&0\end{pmatrix}.}

Mathematisch kann man die Negation damit als Matrixmultiplikation auf den Zustand eines Qubits verstehen, bei dem wie in der klassischen Logik der Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle |0\rangle} auf Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle |1\rangle} und umgekehrt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |1\rangle} auf Null abgebildet wird.

Auf einen allgemeinen Zustand angewendet vertauscht die Negation die komplexen darstellenden Koeffizienten der orthonormalen Basisvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle |0\rangle} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle |1\rangle} , d. h. mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\psi\rangle := \alpha\,|0\rangle + \beta\,|1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix};\quad |\alpha|^2 + |\beta|^2 = 1. } liefert die Negation Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \cdot |\psi\rangle = U \cdot \begin{pmatrix}\alpha\\ \beta \end{pmatrix} = \begin{pmatrix}\beta \\ \alpha \end{pmatrix}} .

In dem folgenden Beispiel wird die Negation auf das zweite Qubit angewendet, wobei das erste Qubit unverändert bleibt. Für die darstellende Matrix der Operation wird eine Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4\times 4} Matrix benötigt. Zerlegt man die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4\times 4} Matrix in 4 Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\times 2} -Matrizen findet man in der oberen linken Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\times 2} -Matrix die Einheitsmatrix und in der unteren rechten Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\times 2} -Matrix findet man die Negationmatrix Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} für ein Qubit. Insgesamt erhält man die Negationsmatrix für das zweite Qubit CNOT-Gatter: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{CNOT} := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}. }

Ein Satz orthonormaler Basisvektoren eines 2-Qubit-Quantumspeichersystems ist: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |00\rangle := \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix};\quad |01\rangle := \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix};\quad |10\rangle := \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix};\quad |11\rangle := \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}. } Auf diese Quantenzustände werden unitäre Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4\times 4} Matrizen angewendet in einem Quantengatter. Die unitäre Matrix wird hier auf ein Zwei-Qubitzustände (als Spezialfall von Mehr-Qubitzustände) angewendet, um den Zustand zu modifizieren, z. B. das in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb C^4} definierte CNOT-Gatter, mit der Zwei-Qubit-Zustandstabelle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 00\rangle\to \vert 00\rangle} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 01\rangle\to \vert 01\rangle} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 10\rangle\to \vert 11\rangle} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 11\rangle\to \vert 10\rangle} .[6] Dabei wird die Negation auf das zweite Qubit angewendet.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \operatorname{CNOT}|00\rangle = |00\rangle} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \operatorname{CNOT}|01\rangle = |01\rangle} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \operatorname{CNOT}|10\rangle = |11\rangle} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \operatorname{CNOT}|11\rangle = |10\rangle}

Das Ergebnis lässt sich zusätzlich bezüglich Stellenindizes Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} symmetrisieren bzw. antisymmetrisieren, etwa nach dem Schema

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |ab\rangle =\frac{1}{2}\left[\left(\vert ab\rangle + \vert ba\rangle \right) + \left(\vert ab\rangle - \vert ba\rangle \right)\right]} ,

wodurch verschränkte Zustände entstehen.

Ein Quantenschaltkreis besteht aus mehreren Quantengattern, die in fester zeitlicher Abfolge auf das Quantenregister angewendet werden. Beispiele hierfür sind die Quanten-Fouriertransformation oder der Shor-Algorithmus. Mathematisch ist ein Quantenschaltkreis auch eine unitäre Transformation, deren Matrix das Produkt der Matrizen der einzelnen Quantengatter ist.

Einweg-Quantencomputer

Ein weiterer Ansatz zur Implementierung eines Quantencomputers ist der sogenannte Einweg-Quantencomputer (one-way quantum computer, Hans J. Briegel, Robert Raußendorf 2001).[7] Dieser unterscheidet sich vom Schaltkreismodell dadurch, dass zuerst ein universeller (also vom Problem unabhängiger) verschränkter Quantenzustand generiert wird (beispielsweise ein sogenannter Clusterzustand), und die eigentliche Rechnung durch gezielte Messungen an diesem Zustand durchgeführt wird. Dabei bestimmen die Ergebnisse früherer Messungen, welche weiteren Messungen durchgeführt werden.

Anders als im Schaltkreismodell wird hier der verschränkte Quantenzustand nur als Ressource benutzt. Bei der eigentlichen Rechnung werden nur einzelne Qubits des verwendeten Zustands gemessen und klassische Rechnungen durchgeführt. Insbesondere werden dabei keine Mehr-Qubit-Operationen durchgeführt (die Herstellung des Zustands benötigt solche natürlich). Dennoch lässt sich zeigen, dass der Einweg-Quantencomputer genauso leistungsfähig ist wie ein auf dem Schaltkreismodell beruhender Quantencomputer.

Adiabatische Quantencomputer

Ein weiterer Ansatz für Quantencomputer beruht auf einem anderen Konzept:[8] Gemäß den Gesetzen der Quantenmechanik bleibt ein quantenmechanisches System, das sich im Grundzustand (Zustand minimaler Energie) eines zeitunabhängigen Systems befindet, auch bei Veränderungen des Systems im Grundzustand, wenn die Veränderung nur hinreichend langsam (also adiabatisch) passiert. Die Idee des adiabatischen Quantencomputers ist es, ein System zu konstruieren, das einen zu dieser Zeit noch unbekannten Grundzustand hat, der der Lösung eines bestimmten Problems entspricht, und ein anderes, dessen Grundzustand leicht experimentell zu präparieren ist. Anschließend wird das leicht zu präparierende System in das System überführt, an dessen Grundzustand man interessiert ist, und dessen Zustand dann gemessen. Wenn der Übergang langsam genug erfolgt ist, hat man so die Lösung des Problems.

Die Firma D-Wave Systems hat 2007 bekannt gegeben, einen kommerziell verwendbaren Quantencomputer entwickelt zu haben, der auf diesem Prinzip beruht.[9] Am 26. Mai 2011 verkaufte die Firma D-Wave Systems den Quantencomputer D-Wave One an die Lockheed Martin Corporation.[10] Ihre Ergebnisse sind allerdings noch umstritten.[11] Laut IBM ist eine kommerzielle Nutzung bisher kaum möglich.[12] 2015 stellte D-Wave Systems ihre verbesserte und aufwärts skalierbare Version D-Wave-2X der Öffentlichkeit vor. Der adiabatische Quantencomputer, der speziell für die Lösung von Optimierungsproblemen entwickelt wurde, soll bei einigen Problemen bis zu 15-mal so schnell sein wie herkömmliche klassische Spezialcomputer für die jeweiligen Probleme (beim D-Wave One war das noch nicht so). Nach Angaben von D-Wave benutzt er supraleitende Technologie und über 1.000 Qubits[13] (genannt 1000+ Qubits, ausgelegt auf 1152 Qubits), bei einer Arbeitstemperatur von 15 mK. Unter Qubit versteht die Firma eine supraleitende Schleife auf ihrem Chip, in der die Information über die Flussrichtung codiert ist. Ein Exemplar wurde an Google und die NASA verkauft, die schon 2013 einen D-Wave-Computer der ersten Generation mit 512 Qubits erwarben.[14] Google benutzt ihn, um die Vorteile von Quantum-Annealing-Algorithmen auszuloten, das heißt Quantenversionen von Simulated Annealing.[15]

Physikalische Realisierung

Das bisher beschriebene Konzept ist zunächst sehr abstrakt, aber allgemein gültig. Will man einen konkret nutzbaren Quantencomputer bauen, muss man die natürlichen physikalischen Einschränkungen beachten, die im Folgenden beschrieben werden.

Relaxation

Überlässt man das System sich selbst, neigt es dazu, mit der Umgebung ein thermisches Gleichgewicht auszubilden. Im einfachsten Fall geschieht dies über Energieaustausch mit der Umgebung, der mit Zustandsänderung der Qubits einhergeht. Dies führt dazu, dass ein Qubit aus dem Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 1\rangle} nach einer gewissen Zeit mit einer bestimmten Wahrscheinlichkeit in den Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 0\rangle} gesprungen ist und umgekehrt. Diesen Prozess nennt man Relaxation. Als Relaxationszeit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_1} bezeichnet man die charakteristische Zeit, in welcher sich das System (meist exponentiell) seinem stationären Zustand nähert.

Dekohärenz

Mit Dekohärenz ist der Verlust der Superpositionseigenschaften eines Quantenzustands gemeint. Durch den Einfluss der Umgebung entwickelt sich aus einem beliebigen Superpositionszustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\lbrace c_0\vert 0\rangle + c_1\vert 1\rangle \right\rbrace} (wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle c_i\in\mathbb C,\ \sum_i |c_i|^2 = 1} ) entweder der Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 0\rangle} oder der Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 1\rangle} (mit entsprechenden Wahrscheinlichkeiten, die zum Beispiel durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |c_i|^2} gegeben sein können, während gemischte Terme (z. B. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sim c_0^*c_1 \,} ) nicht auftreten (Zustandsreduktion; inkohärente vs. kohärente Superposition; Thermalisierung, wie in der statistischen Physik)). Dann verhält sich das Qubit nur noch wie ein klassisches Bit. Die Dekohärenzzeit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_2} ist in der Regel ebenfalls exponential verteilt und typischerweise kleiner als die Relaxationszeit. Während die Relaxation auch für klassische Computer ein Problem bedeutet (so könnten sich Magnete auf der Festplatte spontan umpolen), ist die Dekohärenz ein rein quantenmechanisches Phänomen.

Die Verlässlichkeit von Quantencomputern kann durch die sogenannte Quantenfehlerkorrektur erhöht werden.[16]

Berechenbarkeits- und Komplexitätstheorie

Da formal festgelegt ist, wie ein Quantencomputer arbeitet, können die aus der theoretischen Informatik bekannten Begriffe wie Berechenbarkeit oder Komplexitätsklasse auch auf einen Quantencomputer übertragen werden. Dabei zeigt sich, dass die Menge der lösbaren (berechenbaren) Probleme für einen Quantencomputer nicht größer ist als für einen klassischen Computer. Das heißt, die Church-Turing-These gilt auch für Quantencomputer. Allerdings gibt es starke Indizien dafür, dass sich einige Probleme mit einem Quantencomputer sehr viel (exponentiell) schneller lösen lassen. Der Quantencomputer stellt also ein mögliches Gegenbeispiel zur erweiterten Church-Turing-These dar.[17][18]

Berechenbarkeit

Ein klassischer Computer kann einen Quantencomputer simulieren, da die Wirkung der Gatter auf dem Quantenregister einer Matrix-Vektor-Multiplikation entspricht. Der klassische Computer muss nun einfach all diese Multiplikationen ausführen, um den Anfangs- in den Endzustand des Registers zu überführen. Die Konsequenz dieser Simulierbarkeit ist, dass alle Probleme, die auf einem Quantencomputer gelöst werden können, auch auf einem klassischen Computer gelöst werden können. Umgekehrt bedeutet dies, dass Probleme wie das Halteproblem auch auf Quantencomputern nicht gelöst werden können. Das heißt, auch der Quantencomputer ist kein Gegenbeispiel zur Church-Turing-These.

Umgekehrt kann ein Quantencomputer auch einen klassischen Computer simulieren. Dazu muss man zunächst wissen, dass jeder logische Schaltkreis allein aus NAND-Gattern gebildet werden kann. Mit dem Toffoli-Gatter kann man bei geeigneter Beschaltung der drei Eingänge nun ein Quantengatter erhalten, das sich auf Qubits in der Basis der klassischen Bits Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 0\rangle, \vert 1\rangle} wie ein NAND-Gatter verhält. Außerdem lässt sich das Toffoli-Gate dazu verwenden, ein Eingangsbit zu verdoppeln. Aufgrund des No-Cloning-Theorems ist dies allerdings nur für die Zustände Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 0\rangle, \vert 1\rangle} möglich. Diese Verdopplung (auch Fan-out genannt) ist deshalb nötig, weil es bei einem klassischen Schaltkreis möglich ist, ein Bit auf zwei Leitungen zu verteilen.

Komplexität

Im Rahmen der Komplexitätstheorie ordnet man algorithmische Probleme sogenannten Komplexitätsklassen zu. Die bekanntesten und wichtigsten Vertreter sind die Klassen P und NP. Dabei bezeichnet P diejenigen Probleme, deren Lösung deterministisch in zur Eingabelänge polynomieller Laufzeit berechnet werden kann. In NP liegen die Probleme, zu denen es Lösungsalgorithmen gibt, die nicht-deterministisch polynomiell sind. Der Nicht-Determinismus erlaubt, gleichzeitig verschiedene Möglichkeiten abzutesten. Da unsere aktuellen Rechner deterministisch laufen, muss der Nicht-Determinismus durch Hintereinanderausführung der verschiedenen Möglichkeiten simuliert werden, wodurch die Polynomialität der Lösungsstrategie verloren gehen kann.

Für Quantencomputer definiert man die Komplexitätsklasse BQP (eingeführt 1993 durch Umesh Vazirani und Ethan Bernstein). Diese enthält diejenigen Probleme, deren Laufzeit polynomiell von der Eingabelänge abhängt und deren Fehlerwahrscheinlichkeit unter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac 13} liegt. Es lässt sich zeigen, dass die Simulation eines Quantencomputers und damit auch BQP in der Komplexitätsklasse PSPACE liegt.[19] Ferner gilt P Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \subseteq} BQP, da ein Quantencomputer auch klassische Computer mit höchstens polynomiellem Zeitverlust simulieren kann.

Man geht davon aus, dass es keinen Simulationsalgorithmus gibt, der einen Quantencomputer mit polynomiellem Zeitverlust simuliert, das heißt, dass die erweiterte Church-Turing-These nicht gilt. Bewiesen ist das allerdings nicht. Auch wie BQP zur wichtigen Klasse NP in Beziehung steht, ist noch unklar. Man weiß nicht, ob ein Quantencomputer ein NP-vollständiges Problem effizient lösen kann oder nicht. Könnte man nachweisen, dass BQP eine echte Teilmenge von NP ist, wäre damit auch das P-NP-Problem gelöst: Dann gälte nämlich P Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \neq} NP. Andererseits würde aus dem Nachweis, dass NP echte Teilmenge von BQP ist, folgen, dass P echte Teilmenge von PSPACE ist. Sowohl das P-NP-Problem als auch die Frage P Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \neq} PSPACE sind wichtige ungelöste Fragen der theoretischen Informatik.

Wenn die Frage der Einordnung in Komplexitätsklassen sich für klassische Computer und Quantencomputer als zu schwierig erweisen, ist es in der Informatik üblich zunächst Berechnungsmodelle mit Orakeln zu betrachten, das heißt Zusatzinformationen auf eine Anzahl von Fragen (und je nach benötigter Anzahl kann man die Probleme „Orakel-separieren“). So bewiesen Vazirani und Bernstein in der Arbeit, in der sie BQP einführten, dass in Modellen mit Orakeln BQP größer als das klassische Gegenstück BPP ist (wobei sie den „Bernstein-Vazirani-Algorithmus“ und das zugehörige Problem benutzten). Das zeigte auch schon Daniel Simon 1994 in einem anderen Problem (Simon's Problem, ein Spezialfall des Problems verborgener Untergruppen im abelschen Fall, dass als Inspiration für den Shor-Algorithmus diente),[20] er konnte sogar zeigen, dass der Quantenalgorithmus das Problem bezüglich der benutzten Orakel exponentiell effizienter löst als ein klassischer Computer. Um die Frage zu klären wie die entsprechende Einordnung bezüglich Effizienz und Schnelligkeit aussieht, ist man des Weiteren daran interessiert, wie sich die Quantencomputer-Komplexitätsklasse BQP zur PH im klassischen Fall verhält. Scott Aaronson schlug 2010 vor, dazu dass sogenannte Forrelation-Problem zu untersuchen und zeigte in einer „relationalen“ Version dieses Problems, dass dieses im Orakel-Modell in BQP aber nicht in PH liegt. 2018 zeigten dann Ran Raz und Avishay Tal dass das ursprüngliche Problem im Orakel-Modell in BQP, aber nicht in PH ist.[21][22] Gegeben seien zwei Zufallszahlengeneratoren. Das Forrelation-Problem besteht darin, aus den erzeugten Zufallszahlenfolgen herauszufinden, ob die beiden Zufallszahlgeneratoren unabhängig sind oder die Folgen doch in verborgener Weise verbunden sind, genauer ob die eine die Fouriertransformation der anderen ist. Raz und Tal bewiesen, dass Quantencomputer sehr viel weniger Hinweise (Orakel) für die Lösung benötigen als klassische Computer (beide Klassen sind Orakel-separiert). Ein Quantencomputer benötigt sogar nur ein Orakel, in PH gibt es auch mit unendlich vielen Orakeln keinen Algorithmus, der das Problem löst. Das Beispiel zeigt, dass es selbst im Fall, dass P=NP gilt, Probleme gibt, die Quantencomputer effizient lösen können, klassische Rechner aber nicht.

Bei anderen Problemen wie dem Faktorisierungsproblem ganzer Zahlen wird zwar vermutet, dass Quantencomputer prinzipiell schneller sind (Quantencomputer lösen es polynomialzeitlich mit dem Shor-Algorithmus), es lässt sich aber bisher nicht beweisen, da unbekannt ist, ob das Problem in der Komplexitätsklasse P liegt.

Ein anderes Problem, von dem erwartet worden war, dass es effizient von Quantencomputern gelöst werden kann, nicht aber von klassischen Computern, ist das Empfehlungsproblem (Recommendation Problem), das sogar breite praktische Anwendung hat. Betrachtet wird zum Beispiel das für Online-Dienste wichtige Problem, aus dem Abruf von Diensten oder Waren durch Nutzer Voraussagen über deren Vorlieben zu machen, was sich formalisieren lässt als Auffüllen einer Matrix, die zum Beispiel Waren den Nutzern zuordnet. 2016 gaben Iordanis Kerenidis und Anupam Prakash[23] einen Quantenalgorithmus, der exponentiell schneller war als jeder damals bekannte klassische Algorithmus. 2018 gab die Studentin Ewin Tang allerdings einen klassischen Algorithmus an, der genauso schnell war.[24][25] Tang fand den klassischen Algorithmus in Anlehnung an den Quantenalgorithmus von Kerenidis und Prakash.

Architektur für Quantencomputer

Alle bisher demonstrierten Quantencomputer bestehen nur aus wenigen Qubits und waren hinsichtlich Dekohärenz- und Fehlerraten sowie der verwendeten Architektur zunächst nicht skalierbar. Unter Architektur versteht man in diesem Kontext das Konzept zur skalierbaren Anordnung einer sehr großen Zahl von Qubits. Zudem muss sichergestellt werden, dass die Fehlerrate pro Gatter klein ist (unterhalb der Schwelle für fehlertolerantes Rechnen) und zwar unabhängig von der Zahl der Qubits des Quantencomputers und von der räumlichen Entfernung der beteiligten Qubits im Quantenregister.

Dazu wurde von David DiVincenzo ein Katalog von fünf Kriterien, die ein skalierbarer, fehlertoleranter Quantencomputer erfüllen muss, erstellt. Die DiVincenzo-Kriterien sind[26]

  1. Er besteht aus einem skalierbaren System gut charakterisierter Qubits.
  2. Alle Qubits können in einen wohldefinierten Anfangszustand gebracht werden (z. B. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |00\dots 0\rangle} ).
  3. Ein universelles Set elementarer Quantengatter kann ausgeführt werden.
  4. Einzelne Qubits (zumindest eines) können ausgelesen (gemessen) werden.
  5. Die relevante Dekohärenzzeit ist viel länger als die Zeit, die benötigt wird, ein elementares Quantengatter zu realisieren, sodass mit geeignetem fehlerkorrigierendem Code die Fehlerrate pro Gatter unter der Schwelle für fehlertolerantes Quantenrechnen liegt.

Die größten Anforderungen ergeben sich aus dem ersten und dem letzten Punkt. Die Schwelle für fehlertolerantes Rechnen liegt je nach verwendetem Code und verwendeter Geometrie des Quantenregisters bei einer Fehlerwahrscheinlichkeit von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10^{-4}} bis Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10^{-2}} (oder noch kleineren Werten) pro Gatter.[27] Bisher ist kein universelles Set von Gattern mit dieser Genauigkeit realisiert worden.

Oft werden die oben genannten Kriterien um zwei weitere ergänzt, die sich auf die Vernetzung innerhalb von Quantencomputern beziehen:

  1. Eine Quanten-Schnittstelle (englisch quantum interface) zwischen stationären und mobilen Qubits
  2. Mobile Qubits können zwischen verschiedenen Orten verlässlich ausgetauscht werden.

Die Suche nach einer skalierbaren Architektur für einen fehlertoleranten Quantencomputer ist Gegenstand aktueller Forschung. Die Fragestellung ist, wie man erreichen kann, dass Quantengatter auf verschiedenen Qubits parallel (gleichzeitig) ausgeführt werden können, auch wenn die Wechselwirkung zwischen den physikalischen Qubits lokal ist, d. h. nicht jedes Qubit mit jedem anderen in direkter Wechselwirkung steht. Je nach verwendetem Konzept (Gatter-Netzwerk, Einweg-Quantencomputer, adiabatischer Quantencomputer, …) und der gewählten Implementierung (gefangene Ionen, supraleitende Schaltkreise, …) gibt es hierzu verschiedene Vorschläge, die bislang allenfalls für kleine Prototypen demonstriert wurden. Zu den konkretesten und weitest fortgeschrittenen Vorschlägen gehören die folgenden:

  • Quantencomputer realisiert mit Kernspins in Molekülen (NMR).[28][29]
  • Quantencomputer in mikrostrukturierter Ionenfalle: Qubits werden durch den internen Zustand einzelner gefangener Ionen realisiert. In einer mikrostrukturierten Falle werden die Ionen kontrolliert zwischen Speicher- und Wechselwirkungsregionen hin- und herbewegt.[30] Anstatt die miteinander zu koppelnden Ionen in eine gemeinsame Wechselwirkungsregion zu bewegen, könnten auch langreichweitige Wechselwirkungen zwischen ihnen benutzt werden. In Experimenten an der Universität Innsbruck wurde demonstriert, dass zum Beispiel die elektrische Dipolwechselwirkung zwischen kleinen Gruppen von oszillierenden Ionen (die als Antenne wirken) zur Kopplung von Ionen, die mehr als 50 Mikrometer voneinander entfernt sind, verwendet werden kann.[31][32]
  • Supraleitende Qubits in einem zweidimensionalen Netzwerk von supraleitenden Streifenleitungsresonatoren (stripline resonators).[33]
  • Quantencomputer auf Basis von Stickstoff-Fehlstellen-Zentren (NV-Zentren) in Diamant: Als Qubits fungieren Kernspins von Stickstoff-Atomen in einem zweidimensionalen Gitter von NV-Zentren; Auslese und Kopplung erfolgen über den elektronischen Spin des NV-Zentrums, wobei die Kopplung durch die magnetische Dipolwechselwirkung erreicht wird; inhomogene Magnetfelder ermöglichen die individuelle Adressierung und parallele Operation auf vielen Qubits.[34]
  • Quantencomputer auf Basis Optischer Gitter neutraler kalter Atome.[35]
  • Quantencomputer mit Elektronenspins in Quantenpunkten von Halbleitern.[36]

Forschungsgeschichte

Das Prinzip eines Quantencomputers konnte bereits in den 1990er Jahren realisiert werden. So wurde der Shors Algorithmus im Jahr 2001 mit einem auf Kernspinresonanz beruhenden System am IBM Almaden Research Center und 7 Qubits demonstriert, um die Zahl 15 in ihre Primfaktoren 3 und 5 zu zerlegen.[37] Ebenso konnte im Jahre 2003 ein auf in Ionenfallen gespeicherten Teilchen basierender Quantencomputer den Deutsch-Jozsa-Algorithmus durchführen.[38]

Im November 2005 gelang es Rainer Blatt am Institut für Experimentalphysik der Universität Innsbruck erstmals, ein Quantenregister mit 8 verschränkten Qubits zu erzeugen. Die Verschränkung aller acht Qubits musste durch 650.000 Messungen nachgewiesen werden und dauerte 10 Stunden.[39]

Im März 2011 haben die Innsbrucker Wissenschaftler die Zahl der Qubits noch einmal beinahe verdoppelt. In einer Ionenfalle hielten sie 14 Calciumatome gefangen, welche sie mit Laserlicht manipulierten.[40]

An der Yale University kühlte ein Forscherteam um Leo DiCarlo ein Zwei-Qubit-Register auf einem 7 mm langen und 2 mm breiten, von einem mehrfach gekrümmten Kanal durchzogenen Quantenprozessor auf eine Temperatur von 13 mK ab und erzeugte damit einen 2-Qubit-Register-Quantencomputer. Der supraleitende Chip spielte nach einer Veröffentlichung von Nature 2009 zum ersten Mal Quantenalgorithmen durch.[41][42]

Einer Forschergruppe am National Institute of Standards and Technology (NIST) in Boulder, USA, ist es 2011 gelungen, Ionen mittels Mikrowellen zu verschränken. Die NIST-Forschergruppe hat gezeigt, dass man solche Operationen nicht nur mit einem komplexen, raumfüllenden Lasersystem realisieren kann, sondern auch mit miniaturisierter Mikrowellenelektronik. Um die Verschränkung zu erzeugen, integrierten die Physiker die Mikrowellenquelle in die Elektroden einer sogenannten Chipfalle, einer mikroskopischen chipartigen Struktur zur Speicherung und Manipulation der Ionen in einer Vakuumzelle. Mit ihrem Experiment haben die Forscher gezeigt, dass die Verschränkung der Ionen mit Mikrowellen in 76 % aller Fälle funktioniert. Die bereits seit mehreren Jahren in der Forschung verwendeten laserbasierten Quantenlogikgatter sind mit einer Quote von 99,3 % derzeit noch besser als die Gatter auf Basis von Mikrowellen. Das neue Verfahren hat den Vorteil, dass es nur ungefähr ein Zehntel des Platzes eines Laser-Experiments beansprucht.[43][44]

Am 2. Januar 2014 meldete die Washington Post unter Berufung auf Dokumente des Whistleblowers Edward Snowden, dass die National Security Agency (NSA) der USA an der Entwicklung eines „kryptologisch nützlichen“ Quantencomputers arbeitet.[45] Obwohl der aktuelle Stand (2019) der Technik noch keine Sicherheitsbedrohung darstellt, wird an Post-Quanten-Kryptographie gearbeitet.[46]

IBM ermöglicht seit 2015 den Online-Zugriff auf einen supraleiterbasierten Quantenprozessor. Zunächst standen 5 Qubits zur Verfügung, seit November 2017 sind es 20. Die Website umfasst einen Editor, mit dem Programme für den Quantencomputer geschrieben werden können, sowie ein SDK und interaktive Anleitungen.[47][48][49] Bis November 2017 wurden über 35 wissenschaftliche Publikationen veröffentlicht, die den IBM-Computer Q Experience verwendet haben.[50] Über die Cloud bietet IBM auch Zugriff auf die 50-Qubit-Maschine in ihrem Labor an. Der Quantenzustand dieses Systems wird für 90 Mikrosekunden gehalten, was Ende 2017 ein Rekord war. Bei der Technik für effiziente Simulation von Quantencomputern auf klassischen Hochleistungsrechnern kündigte IBM 2017 an, die 49-Qubit-Grenze erreicht zu haben.[51][52]

Außer bei IBM entwickeln viele große Computerfirmen sogenannte Quantencomputer bzw. deren Technologie, so Google, Microsoft, Intel und Startups wie Rigetti in San Francisco. Google stellte 2018 seinen neuen Quantenprozessor Bristlecone mit 72 Qubits (skaliert von vorher 9 Qubits) und niedriger Fehlerrate für logische Operationen und Auslesen vor.[53] Er basiert auch auf Supraleitern und dient hauptsächlich der Erforschung der Technologie und dem Nachweis von Quantum Supremacy (Quantenüberlegenheit, John Preskill 2012),[54] also der These, wonach der Quantencomputer einem klassischen Supercomputer überlegen ist. Google schätzt, dass zur Demonstration von Quantum Supremacy mindestens 49 Qubits, eine Schaltkreistiefe von über 40 und eine Fehlerrate unter einem halben Prozent erforderlich sind. Die Anzahl der Qubits alleine ist nicht entscheidend, sondern zum Beispiel auch die Fehlerrate und die Tiefe des Schaltkreises, das heißt die Anzahl der Gatter (logischen Operationen), die in den Qubits implementiert werden können, bevor die Kohärenz aufgrund zu hoher Fehlerrate zerstört wird. Vor Bristlecone erreichte Google eine Fehlerrate von rund ein Prozent für Auslesen und für die logischen Operationen 0,1 Prozent für Gatter eines einzelnen Qubits und 0,6 Prozent für Zwei-Qubit-Gatter.[55] Ein kommerziell nutzbarer Quantencomputer liegt nach Google bei rund einer Million Qubits.

Microsoft konzentrierte sich 2018 auf theoretische Arbeiten über die Fehlerkorrektur mit Hilfe topologischer Quantencomputer (ein Konzept, das Alexei Jurjewitsch Kitajew 1997 einführte) unter Leitung des Mathematikers Michael Freedman und entwickelte einen Simulator, mit dem Quantencomputer auf klassischen Computern simuliert werden können, und Software für Quantencomputer. Sie haben ein eigenes Quantencomputerlabor (Station Q) in Santa Barbara.[56]

Google-Forscher berichteten in einem am 23. Oktober 2019 in der Fachzeitschrift Nature publizierten Artikel, Googles Quantenprozessor Sycamore habe für eine komplexe Berechnung etwa 200 Sekunden gebraucht, für die der modernste Supercomputer Summit etwa 10.000 Jahre bräuchte. Der Sycamore-Chip hat 53 Qubits.[57][58] Konkurrent IBM bezweifelte die Google-Ergebnisse und damit die Quantenüberlegenheit. Googles Rechnung enthalte einen Fehler. Die Aufgabe könne laut IBM von klassischen Systemen in 2 12 Tagen gelöst werden.[59] Im Dezember 2020 kündigte eine Gruppe chinesischer Wissenschaftler um Jian-Wei Pan an, den Nachweis der Quantenüberlegenheit beim Problem des sogenannten Gaussian Boson Sampling nach einem Vorschlag von Scott Aaronson und Alex Arkhipov von 2011 mit einem optischen Quantencomputer experimentell erbracht zu haben.[60][61] Der Nachweis ist allerdings im Gegensatz zu dem Quantencomputer der Google-Gruppe auf dieses spezielle Problem zugeschnitten. Das von der chinesischen Gruppe im Vergleich dazu angegebene schlechte Abschneiden klassischer Computer (Rechenzeit 2,5 Milliarden Jahre im Vergleich zu den 200 Sekunden, die der Quantencomputer benötigte) wurde von Wissenschaftlern bei Google bezweifelt.

Ein entscheidendes Problem von Quantenrechner-Schaltkreisen ist die hohe Fehlerrate. Es sind deshalb mehrere physikalische Qubits nötig, um ein logisch nutzbares Qubit zu erhalten. 2021 zeigte das Quantencomputer-Team von Google (Julian Kelly u. a.) mit ihrem Sycamore Prozessor (54 physische Qubits), dass die Fehlerrate exponentiell mit der Anzahl physischer Qubits fällt. Die physikalische Fehlerrate lag im Bereich von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10^{-3}} , bei der Erhöhung der Anzahl der physischen Qubits in einem logischen Qubit von 5 auf 21 konnte mit den verwendeten fehlerkorrigierenden Codes (Stabilisier-Codes) eine Gesamtfehlerunterdrückung um einen Faktor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 100} erreicht werden, wobei die Fehlerkorrektur über 50 Runden stabil blieb.[62] Das Team gab zwar einen prinzipiellen Nachweis mit solchen Fehlerkorrekturen zu skalierbaren Quantencomputern zu kommen, für brauchbare Quantencomputer sind aber nach Schätzungen des Google-Teams rund 1000 physische Qubits in einer logischen Qubit-Einheit nötig.[63]

Literatur

  • D. Bruß: Quanteninformation Fischer Taschenbuch Verlag, Frankfurt am Main 2015, ISBN 978-3-596-30422-6.
  • M. Homeister: Quantum Computing verstehen: Grundlagen, Anwendungen, Perspektiven Springer/Vieweg, Wiesbaden 2022, sechste Auflage, ISBN 978-3-658-36433-5.
  • B. Lenze: Mathematik und Quantum Computing Logos Verlag, Berlin 2020, zweite Auflage, ISBN 978-3-8325-4716-5.
  • R. J. Lipton, K. W. Regan: Quantum Algorithms via Linear Algebra: A Primer MIT Press, Cambridge MA 2014, ISBN 978-0-262-02839-4.
  • C. J. Meier: Eine kurze Geschichte des Quantencomputers. Verlag Heinz Heise, Hannover 2015, ISBN 978-3-944099-06-4.
  • A. Montanaro: Quantum Algorithms. npj Quantum Information, Band 2, 2016, S. 15023, Arxiv
  • M. A. Nielsen, I. L. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge MA 2010, ISBN 978-1-107-00217-3.
  • W. Scherer: Mathematik der Quanteninformatik. Springer-Verlag, Berlin-Heidelberg 2016, ISBN 978-3-662-49079-2.
  • J. Stolze, D. Suter: Quantum Computing: A Short Course from Theory to Experiment. Wiley-VCH, Weinheim 2004, ISBN 3-527-40787-1.
  • Einsteins unverhofftes Erbe. Quanteninformationstechnologie (Memento vom 5. Januar 2018 im Internet Archive), Broschüre des Bundesministeriums für Bildung und Forschung, 2005.
  • B. Baumann: Quantencomputer – Ein erster Einblick fast ohne Mathematik, 2022, ResearchGate

Weblinks

 Commons: Quantencomputer – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Quantencomputer – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Mark Mantel: IBM Eagle: Der erste Quantencomputer, den Supercomputer nicht simulieren können. In: heise.de. 16. November 2021, abgerufen am 16. November 2021.
  2. Focus on quantum science and technology initiatives around the world. In: Quantum Science and Technology. 5, Nr. 1, 2019 doi:10.1088/2058-9565/ab5992 (special issue zu verschiedenen nationalen „Quanten-Initiativen“).
  3. Jan Goetz: Europa braucht einen eigenen Quantencomputer – tut dafür aber nicht genug. In: Handelsblatt. 13. November 2019, abgerufen am 7. Februar 2020.; Lars Jaeger: Mehr Zukunft wagen!. Gütersloher Verlagshaus, 2019.; Quantentechnologien – von den Grundlagen zum Markt. (PDF) BMBF, September 2018, abgerufen am 7. Februar 2020.
  4. Barbara Gillmann: Karliczek startet Quanten-Initiative. In: Handelsblatt. 2. Februar 2020, abgerufen am 7. Februar 2020.
  5. M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge University Press (2000), S. 531 ff.
  6. Es wird also der zweite der beiden Spins invertiert, wenn der erste Zustand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 1\rangle} ist.
  7. Robert Raussendorf, Daniel E. Browne, Hans J. Briegel The one-way quantum computer – a non-network model of quantum computation, Journal of Modern Optics, Band 49, 2002, S. 1299, {{{3}}}. In: arXiv.org
  8. Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael Sipser: Quantum Computation by Adiabatic Evolution. Preprint 2000, {{{3}}}. In: arXiv.org
  9. D-Wave, The Quantum Computing Company.
  10. HPCwire: D-Wave Sells First Quantum Computer.
  11. Robert Gast Ein Quantenmärchen. In: Frankfurter Allgemeine Sonntagszeitung, 26. Mai 2013, S. 61, 63.
  12. Bericht in Der Spiegel vom 16. November 2021
  13. D-Wave Systems Announces the General Availability of the 1000+ Qubit D-Wave 2X Quantum Computer, Pressemitteilung D-Wave Systems, 20. August 2015.
  14. Dieser Chip rechnet besser als ein Roastbeef-Sandwich. In: Zeit Online, 4. Juni 2013; abgerufen am 16. Februar 2016.
  15. Google Research Blog vom 8. Dezember 2015.
  16. Quantenfehlerkorrektur (PDF; 158 kB).
  17. Michael A. Nielsen, Isaac L. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2010.
  18. Scott Aaronson: Quantum Complexity Theory. MIT, 2010, abgerufen am 24. Januar 2022 (english, Lecture Notes).
  19. E. Bernstein, U. Vazirani: Quantum Complexity Theory. In: SIAM J. Comput.. 26, Nr. 5, 1997 S. 1411, doi:10.1137/S0097539796300921 (Theorem 8.2.3, https://people.eecs.berkeley.edu/~vazirani/pubs/bv.pdf).
  20. Simon, On the Power of Quantum Computation, SIAM Journal on Computing, Band 26, 1997, S. 1474–1483
  21. Kevin Hartnett: Finally, a Problem That Only Quantum Computers Will Ever Be Able to Solve. In: Quanta Magazine. 21. Juni 2018, abgerufen am 22. Januar 2022 (english).
  22. Ran Raz, Avishay Tal: Oracle separation of BQP and PH. In: STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. 2019 S. 13–23, doi:10.1145/3313276.3316315 (https://eccc.weizmann.ac.il/report/2018/107/).
  23. Iordanis Kerenidis, Anupam Prakash: Quantum recommendation problems. 2016
  24. Kevin Hartnett, Major Quantum Computing Advance Made Obsolete by Teenager, Quanta Magazine, 31. Juli 2018.
  25. Ewin Tang: A quantum-inspired classical algorithm for recommendation systems. In: STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. 2019 S. 217–228, doi:10.1145/3313276.3316310.
  26. David P. DiVincenzo: Topics in Quantum Computers. In: Mesoscopic Electron Transport. NATO ASI Series E. Nr. 345, Kluwer Academic Publishers, Dordrecht 1997, S. 657.
  27. A. G. Fowler et al.: High-threshold universal quantum computation on the surface code. In: Phys. Rev. A. 80, 2009 S. 052312.
  28. Neil Gershenfeld, Isaac Chuang, Bulk Spin-Resonance Quantum Computation, Science, Band 275, 1997, 350–356.
  29. Gershenfeld, Chuang, Quantum computing with molecules, Scientific American, Band 278, 1998, Nr. 6, S. 66–71.
  30. D. Kielpinski, C. Monroe, and D. J. Wineland: Architecture for a large-scale ion-trap quantum computer. In: Nature. 417, 2002-06-13 S. 709–711, doi:10.1038/nature00784.
  31. M. Harlander et al.: Trapped-ion antennae for the transmission of quantum information. In: Nature. 2011-02 doi:10.1038/nature09800.
  32. ORF/APA: Quantenbytes kommunizieren per Funk. 23. Februar 2011, abgerufen am 26. Februar 2011.
  33. F. Helmer et al.: Cavity grid for scalable quantum computation with superconducting circuits. In: Europhysics Letters. 85, 2009 S. 50007, doi:10.1209/0295-5075/85/50007.
  34. Yao et al.: Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor, 13. Dezember 2010, {{{3}}}. In: arXiv.org
  35. David S. Weiss, M. Saffman: Quantum computing with neutral atoms, Physics Today, Band 70, Nr. 7, 2017, S. 44.
  36. Lieven Vandersypen, Mark Eriksson: Quantum computing with semiconductor spins, Physics Today, Band 72, Heft 8, 2019, S. 38
  37. L. M. K. Vandersypen u. a.: Experimental realization of Shor’s factorizing algorithm using nuclear magnetic resonance. In: letters to nature. Band 414, 20./27. Dezember 2001.
  38. S. Gulde u. a.: Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. In: Nature. Band 421, 2003, 48.
  39. H. Häffner, W. Hänsel u. a.: Scalable multiparticle entanglement of trapped ions. In: Nature. 438, 2005, S. 643–646, doi:10.1038/nature04279.
  40. Mit 14 Quantenbits rechnen. In: iPoint, 31. März 2011.
  41. Jürgen Rink: Supraleitungs-Quantenrechner. In: c’t. 2009, Heft 16, S. 52.
  42. L. DiCarlo, J. M. Chow u. a.: Demonstration of two-qubit algorithms with a superconducting quantum processor. In: Nature. 460, 2009, S. 240, doi:10.1038/nature08121. {{{3}}}. In: arXiv.org
  43. IDW-Online: Ein wichtiger Schritt in Richtung Quantencomputer, 23. August 2011.
  44. C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, D. J. Wineland: Microwave quantum logic gates for trapped ions. In: Nature. 476, 2011, S. 181–184, doi:10.1038/nature10290.
  45. NSA seeks to build quantum computer that could crack most types of encryption. washingtonpost.com, 3. Januar 2014.
  46. Dorothy Denning: Is Quantum Computing a Cybersecurity Threat?. In: American Scientist. 107, Nr. 2, 2019 S. 83, doi:10.1511/2019.107.2.83 (https://www.americanscientist.org/article/is-quantum-computing-a-cybersecurity-threat).
  47. Davide Castelvecchi: IBM's quantum cloud computer goes commercial. In: Nature. 6. März 2017, abgerufen am 16. Januar 2018 (english).
  48. Andrew Dalton: IBM unveils its most powerful quantum processor yet. In: engadget.com. 17. Mai 2017, abgerufen am 18. Januar 2018 (english).
  49. Will Knight: IBM Raises the Bar with a 50-Qubit Quantum Computer. In: MIT Technology Review. 10. November 2017, abgerufen am 16. Januar 2018 (english).
  50. Dario Gil: The future is quantum. In: ibm.com. 10. November 2017, abgerufen am 16. Januar 2018 (english).
  51. Edwin Pednault u. a., Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits, Arxiv 2017.
  52. Edwin Pednault, Quantum Computing: Breaking Through the 49 Qubit Simulation Barrier, IBM, 17. Oktober 2017.
  53. A Preview of Bristlecone, Google’s New Quantum Processor, AI Googleblog, 5. März 2018.
  54. Philip Ball, Race for quantum supremacy hits theoretical quagmire, Nature News, 13. November 2017.
  55. Frederic Lardinois, Google’s new Bristlecone processor brings it one step closer to quantum supremacy, Techcrunch, 5. März 2018.
  56. Frederic Lardinois, Microsoft places its bets on quantum computing, Techcrunch, 26. September 2017.
  57. Quantum supremacy using a programmable superconducting processor nature.com, abgerufen am 23. Oktober 2019.
  58. Jetzt auch offiziell: Googles Quantencomputer beweist „Quantum Supremacy“ Bei: heise.de, abgerufen am 23. Oktober 2019.
  59. Google meldet Quantenüberlegenheit. Bei: tagesschau.de. Abgerufen am 24. Oktober 2019.
  60. Robert Gast: Chinesischer Quantencomputer beweist Quantenüberlegenheit. In: Spektrum.de. Spektrum der Wissenschaft Verlagsgesellschaft mbH, 8. Dezember 2020, abgerufen am 9. Dezember 2020.
  61. Han-Sen Zhong u. a.: Quantum computational advantage using photons. In: Science. 370, Nr. 6523, 2020-12-18 S. 1460–1463, doi:10.1126/science.abe8770, PMID 33273064.
  62. Google Quantum AI: Exponential suppression of bit or phase errors with cyclic error correction, Nature, Band 595, 2021, S. 383-387
  63. Matthew Sparkes, Google demonstrates vital step towards large-scale quantum computers, New Scientist 14. Juli 2021

Anmerkungen

  1. „in der Basis Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{|0\rangle,|1\rangle\}} diagonale und nicht entartete Observable“ bedeutet vereinfacht gesagt: eine Messgröße, die im Fall des reinen Zustands Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |0\rangle} immer dasselbe eine Messergebnis ergibt, und im Fall des Zustands Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |1\rangle} immer dasselbe andere Ergebnis.
  2. In der Spin-Interpretation (Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 1\rangle} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat =\uparrow} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert 0\rangle} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat =\downarrow} ) haben Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi^\prime} bzw. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi} verschiedene Symmetrie, nämlich Singulett- bzw. Triplett-Symmetrie; d. h. der Gesamtspin S des Zweispinsystems ist für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi^\prime} Null, für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Psi} dagegen Eins.
  3. Dies steht nicht im Widerspruch zum Verfahren der (super)dichten Kodierung, welche die Übertragung von zwei klassischen Bits durch Senden eines Qubits erlaubt (siehe z. B.: M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge University Press (2000), S. 97). Denn diese zwei Bits sind nur zugänglich, wenn der Empfänger sowohl das übertragene Qubit als auch das mit ihm verschränkte (und schon beim Empfänger befindliche) Qubit, also insgesamt zwei Qubits misst.
Dieser Artikel basiert ursprünglich auf dem Artikel Quantencomputer aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.