Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.
Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ... Vielen Dank für Ihr Engagement! (→ Spendenkonten) |
How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida |
Trigonales Kristallsystem
Das Trigonale Kristallsystem gehört zu den sieben Kristallsystemen in der Kristallographie. Es umfasst alle Punktgruppen mit einer dreizähligen Dreh- oder Drehinversionsachse. Das trigonale Kristallsystem ist mit dem hexagonalen Kristallsystem eng verwandt und bildet zusammen mit ihm die hexagonale Kristallfamilie.
Die trigonalen Punktgruppen
Das trigonale Kristallsystem umfasst die Punktgruppen . Dies sind alle die Punktgruppen der hexagonalen Kristallfamilie, in denen es eine Raumgruppe mit rhomboedrischer Zentrierung gibt – die Raumgruppen des hexagonalen Kristallsystems können alle mit dem hexagonal primitiven Achsensystem beschrieben werden. Das trigonale Kristallsystem umfasst somit alle Untergruppen der Punktgruppe , die eine 3-zählige Achse haben. Im Gegensatz zu den hexagonalen Punktgruppen haben diese Punktgruppen alle eine kubische Obergruppe. Folgende Tabelle liefert einen Überblick über die Raumgruppen des trigonalen Kristallsystems.
Punktgruppe | Primitive Raumgruppen | Zentrierte Raumgruppen |
---|---|---|
, | ||
, | ||
, | ||
, | ||
, |
Die Achsensysteme des trigonalen Kristallsystems
Zur Beschreibung trigonaler Raumgruppen finden zwei verschiedene Gitter-Systeme Verwendung: das hexagonale und das rhomboedrische. Diese sind im Artikel hexagonales Kristallsystem ausführlich beschrieben. Die Begriffe trigonal und rhomboedrisch sind im modernen Sprachgebrauch klar abgegrenzt:
- Trigonal ist die Bezeichnung für eine Menge von Symmetriegruppen.
- Rhomboedrisch ist die Bezeichnung eines Gitter-Systems.
Punktgruppen im trigonalen Kristallsystem und ihre physikalischen Eigenschaften
Zur Beschreibung der trigonalen Kristallklassen in Hermann-Mauguin-Symbolik werden die Symmetrieoperationen bezüglich vorgegebener Richtungen im Gitter-System angegeben.
Im hexagonalen Achsensystem: 1. Symbol in Richtung der c-Achse (<001>). 2. Symbol in Richtung einer a-Achse (<100>). 3. Symbol in einer Richtung senkrecht zu einer a- und der c-Achse (<120>). Für die 3. Richtung wird auch oftmals die im Allgemeinen nicht äquivalente Richtung <210> angegeben. Auch wenn dies speziell für die Angabe der Lage der Symmetrieelemente keine Rolle spielt, so entspricht diese Angabe nicht den Konventionen.
Im rhomboedrischen Achsensystem: 1. Symbol in Richtung der Raumdiagonalen (<111>). 2. Symbol in Richtung einer Flächendiagonalen (<110>).
Charakteristisch für alle Raumgruppen des trigonalen Kristallsystems ist die 3 (oder 3) an 1. Stelle des Raumgruppensymbols.
Punktgruppe (Kristallklasse) | Physikalische Eigenschaften[Anm. 1] | Beispiele | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nr. | Kristallsystem | Name | Schoenflies-Symbol | Internationales Symbol (Hermann-Mauguin) |
Laueklasse | Zugehörige Raumgruppen (Nr.) |
Enantiomorphie | Optische Aktivität | Pyroelektrizität | Piezoelektrizität; SHG-Effekt | ||
Voll | Kurz | |||||||||||
16 | trigonal | trigonal-pyramidal | C3 | 3 | 3 | 3 | 143–146 | + | + | + [001] | + | Carlinit Gratonit |
17 | rhomboedrisch | C3i (S6) | 3 | 3 | 147–148 | – | – | – | – | Dolomit Dioptas | ||
18 | trigonal-trapezoedrisch | D3 | 321 bzw. 312 | 32 | 3m | 149–155 | + | + | – | + | Quarz Tellur | |
19 | ditrigonal-pyramidal | C3v | 3m1 bzw. 31m | 3m | 156–161 | – | – | + [001] | + | Turmalin Pyrargyrit | ||
20 | ditrigonal-skalenoedrisch | D3d | 32/m1 bzw. 312/m | 3m | 162–167 | – | – | – | – | Calcit Korund | ||
|
Weitere trigonal kristallisierende chemische Stoffe siehe Kategorie:Trigonales Kristallsystem
Kristallformen des trigonalen Kristallsystems
Ditrigonales Skalenoeder
Trigonales Trapezoeder
Literatur
- W. Borchardt-Ott: Kristallographie. 6. Auflage. Springer, Berlin 2002, ISBN 3-540-43964-1.
- W. Massa: Kristallstrukturbestimmung. 3. Auflage. Teubner, Stuttgart 2002, ISBN 3-519-23527-7.
- M. Okrusch, S. Matthes: Mineralogie. 7. Auflage. Springer, Berlin 2005, ISBN 3-540-23812-3.
- Hahn, Theo (Hrsg.): International Tables for Crystallography Vol. A D. Reidel publishing Company, Dordrecht 1983, ISBN 90-277-1445-2
Weblinks
- Kurzskript Algebra I – Kristallographie. Uni Dortmund, S. 11 (PDF, 412 kB).
triklin | monoklin | orthorhombisch | tetragonal | trigonal | hexagonal | kubisch
Dieser Artikel basiert ursprünglich auf dem Artikel Trigonales Kristallsystem aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar. |