Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Viereck

Aus Jewiki
Zur Navigation springen Zur Suche springen
Dieser Artikel beschreibt die ebene, geometrische Figur; zu weiteren Bedeutungen siehe Viereck (Begriffsklärung).
Einige Typen von Vierecken

Ein Viereck (veraltet auch Geviert, auch Tetragon) ist eine Figur der ebenen Geometrie, nämlich ein Vieleck mit vier Ecken und vier Seiten. In der Mathematik definiert man (ebene) Vierecke als Polygone mit vier Ecken, und (daher auch) vier Kanten (oder Seiten). Analog zu Dreiecken ist auch eine Verallgemeinerung des Vierecksbegriffes auf nichteuklidische Geometrien (gekrümmte Vierecke) möglich. In der projektiven Geometrie spielen vollständige Vierecke und die dazu dualen vollständigen Vierseite eine wichtige Rolle. In der endlichen Geometrie werden Inzidenzeigenschaften des Vierecks zur Definition des Begriffs „Verallgemeinertes Viereck“ verwendet.

Das regelmäßige (oder reguläre) Viereck ist das Quadrat.

Ein Viereck hat zwei Diagonalen. Liegen beide Diagonalen innerhalb des Vierecks, so ist das Viereck konvex (konvexes Viereck), liegt genau eine Diagonale außerhalb, so hat das Viereck eine konkave Ecke (nicht-konvexes Viereck). Bei einem überschlagenen (auch: verschränkten) Viereck liegen beide Diagonalen außerhalb des Vierecks (als Beispiel siehe verschränktes Trapez). Überschlagene Vierecke sind verallgemeinerte Polygone und werden normalerweise nicht zu den (normalen oder "echten") Vierecken gerechnet. Gleiches gilt für entartete Vierecke, bei denen zwei oder mehr Eckpunkte zusammenfallen oder mehr als zwei Eckpunkte auf einer Geraden liegen.

Spezielle Vierecke

Hierarchie der Vierecke

Ein Trapez ist ein Viereck mit mindestens zwei parallelen Seiten. Sind je zwei einander gegenüberliegende Seiten parallel, spricht man vom Parallelogramm. Ein Viereck, welches vier gleich große (Innen-)Winkel (90°, siehe rechter Winkel) hat, ist ein Rechteck. Beim Drachenviereck (Deltoid) stehen die Diagonalen senkrecht aufeinander, und eine Diagonale wird durch die andere halbiert. Dies ist gleichbedeutend damit, dass es zwei Paare benachbarter Seiten gibt, die jeweils gleich lang sind. Bei vier gleich langen Seiten spricht man von einem Rhombus (Raute). Ein Quadrat hat vier gleich lange Seiten und auch vier gleich große (Innen-)Winkel (90°). Bei einem Sehnenviereck sind die vier Seiten Sehnen des Umkreises. Sind die vier Seiten Tangenten eines Inkreises, so spricht man von einem Tangentenviereck.

Zwischen den einzelnen Vierecktypen gelten diverse Mengenrelationen, insbesondere die in der Grafik dargestellten Teilmengenbeziehungen, wie zum Beispiel:

  • Quadrate ⊂ Rechtecke ⊂ Parallelogramme ⊂ Trapeze ⊂ konvexe Vierecke

(Dabei steht jeweils der Begriff X synonym für Menge aller X)

Ferner gelten auch noch folgende Beziehungen:

  • Quadrate = Rechtecke ∩ Rauten
  • Quadrate = Drachenvierecke ∩ gleichschenklige Trapeze
  • Rechtecke = Sehnenvierecke ∩ Parallelogramme
  • Rauten = Drachenvierecke ∩ Trapeze
  • Rauten = Tangentenvierecke ∩ Parallelogramme
  • Gleichschenklige Trapeze = Sehnenvierecke ∩ Trapeze

Klassifikation

Die ebenen Vierecke werden nach verschiedenen Gesichtspunkten eingeteilt:

  • nach Eigenschaften des Inneren:
    • konvex
    • nicht konvex
  • nach Symmetrie-Eigenschaften:
    • eine Diagonale ist Symmetrieachse: Deltoid
    • beide Diagonalen sind Symmetrieachsen: Rhombus
    • die Mittelsenkrechte einer Seite ist eine Symmetrieachse: gleichschenkeliges Trapez
    • die Mittelsenkrechten zweier Seiten sind Symmetrieachsen: Rechteck
    • vier Symmetrieachsen: Quadrat
    • zweizählige Symmetrie (punktsymmetrisch): Parallelogramm
    • vierzählige Symmetrie: Quadrat
  • nach der Länge der Seiten:
    • zwei Paare gleich langer gegenüberliegender Seiten: Parallelogramm
    • zwei Paare gleich langer benachbarter Seiten: Deltoid (Drachenviereck)
    • gleichseitiges Viereck: Rhombus (oder auch Raute)
    • die Summe der Längen gegenüberliegender Seiten ist gleich: Tangentenviereck
  • nach der Größe der Winkel:
    • zwei Paare gleich großer gegenüberliegender Winkel: Parallelogramm
    • zwei Paare gleich großer benachbarter Winkel: gleichschenkeliges Trapez
    • gleichwinkeliges Viereck: Rechteck
    • die Summe gegenüberliegender Winkel ergibt 180°: Sehnenviereck
  • nach der Lage der Seiten:
    • ein Paar paralleler Seiten: Trapez
    • zwei Paar paralleler Seiten: Parallelogramm
    • die Seiten berühren denselben Kreis (den Inkreis): Tangentenviereck
  • nach der Lage der Ecken:
    • die Ecken liegen auf einem Kreis (dem Umkreis): Sehnenviereck

Formeln

Bezeichnungen am Viereck

Die Vierecksfläche A lässt sich ermitteln aus

Sind die Koordinaten der Eckpunkte gegeben, so erhält man mit der gaußschen Trapezformel den einfachen Ausdruck

.

Ein Viereck kann unter anderem durch geeignete Kombinationen folgender Angaben (fünf voneinander unabhängige Bestimmungsstücke) beschrieben werden:

  • Winkel an den Ecken (Innenwinkel)
  • Länge der Seiten
  • Länge der Diagonalen
  • Umfang
  • Fläche.

Manche Kombinationen, z.B. "4 Seiten und 1 Innenwinkel" sind jedoch mehrdeutig, da die dem gegebenen Winkel gegenüberliegende Ecke konvex oder konkav sein kann.

Schwerpunkt

Bei punktsymmetrischen Vierecken (Parallelogrammen) ist der Schwerpunkt das Symmetriezentrum, also der Diagonalenschnittpunkt.

Im Allgemeinen muss man unterscheiden zwischen dem Eckenschwerpunkt (alle Masse sitzt in den Ecken, jede Ecke hat die gleiche Masse) und dem Flächenschwerpunkt (die Masse ist gleichmäßig über die Fläche des Vierecks verteilt.) Beim Dreieck stimmen diese beiden Schwerpunkte überein. Daneben gibt es noch den Kantenschwerpunkt (die Masse ist gleichmäßig auf die Kanten verteilt, die Masse jeder Kante ist proportional zu ihrer Länge). Der Kantenschwerpunkt wird jedoch selten betrachtet. Er stimmt auch beim Dreieck nicht mit dem Flächen- und Eckenschwerpunkt überein, sondern entspricht dort dem Inkreismittelpunkt des Mittendreiecks.[1]

Den Flächenschwerpunkt eines Vierecks kann man wie folgt konstruieren: Man zerlegt das Viereck durch eine Diagonale in zwei Dreiecke und bestimmt jeweils deren Schwerpunkt als Schnittpunkt der Seitenhalbierenden. Diese beiden Punkte verbindet man durch eine Gerade. Dasselbe wiederholt man, indem man das Viereck durch die andere Diagonale teilt. Der Schnittpunkt der beiden Verbindungsgeraden ist der Schwerpunkt des Vierecks.[1]

Begründung: Die Gerade durch die beiden Dreiecksschwerpunkte ist eine Schwerlinie beider Dreiecke und damit auch des Vierecks. Also muss der Schwerpunkt auf dieser Geraden liegen.

Den Eckenschwerpunkt erhält man, indem man die Mittelpunkte gegenüberliegender Seiten verbindet. Der Schnittpunkt der beiden Verbindungslinien ist der Eckenschwerpunkt.[1] Ist ein kartesisches Koordinatensystem gegeben, so kann man die Koordinaten des Eckenschwerpunkts aus den Koordinaten der Ecken berechnen:

Einzelnachweise

  1. 1,0 1,1 1,2 Hartmut Wellstein: Elementargeometrie, Vorlesungsskript, Website der Universität Flensburg 2000/2001, Kapitel 1 Schwerpunkte, abgerufen am 13. Februar 2011

Siehe auch

Weblink

Dieser Artikel basiert ursprünglich auf dem Artikel Viereck aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.