Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Invariante (Mathematik)

Aus Jewiki
Zur Navigation springen Zur Suche springen

In der Mathematik versteht man unter einer Invariante eine mit einem Objekt assoziierte Größe, die sich bei einer jeweils passenden Klasse von Modifikationen des Objektes nicht ändert. Invarianten sind ein wichtiges Hilfsmittel bei Klassifikationsproblemen: Objekte mit unterschiedlichen Invarianten sind wesentlich verschieden; gilt auch die Umkehrung, d. h. sind Objekte mit gleichen Invarianten im Wesentlichen identisch, so spricht man von einem vollständigen Satz von Invarianten oder von trennenden Invarianten.

Einführendes Beispiel

Die betrachteten Objekte sind Paare Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x,y)} reeller Zahlen, erlaubte Modifikationen bestehen darin, zu beiden Zahlen dieselbe beliebig gewählte Zahl zu addieren:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x,y)\quad\longmapsto\quad(x',y')=(x+z,y+z)} .

Eine Invariante ist in diesem Fall die Differenz Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x-y} der beiden Zahlen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x' - y' = (x+z) - (y+z) = x - y.}

Eine Interpretation dieses Beispiels könnte sein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} sind die Anfangs- und Endpunkt einer Stange, gemessen von einem festen Punkt in der Verlängerung der Stange. Die Modifikationen entsprechen einer Verschiebung der Stange um Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} , die Invariante ist die Länge der Stange.

In diesem Beispiel genügt bereits diese eine Invariante für eine vollständige Klassifikation: Zwei Zahlenpaare Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1,y_1)} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_2,y_2)} gehen genau dann auseinander hervor, das heißt, es gibt ein Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} , so dass

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 + z = x_2} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_1 + z = y_2,}

wenn die Längen übereinstimmen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 - y_1 = x_2 - y_2.}

(Beweis: Setze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z = x_2 - x_1} , dann ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_1+z=x_2-(x_1-y_1)=x_2-(x_2-y_2)=y_2.} )

Weitere Beispiele

  • Die Dimension eines Vektorraumes ist eine Isomorphie-Invariante, d. h., sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} isomorphe Vektorräume, so stimmen ihre Dimensionen überein. Es gilt auch die Umkehrung: Zwei Vektorräume gleicher Dimension (aufgefasst als Kardinalzahl) über einem gemeinsamen Grundkörper sind isomorph.
  • Die Determinante einer Matrix ist eine Ähnlichkeitsinvariante, d. h., sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} zwei Matrizen, für die es eine invertierbare Matrix Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} gibt, so dass Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B=SAS^{-1}} gilt, so haben Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} dieselbe Determinante. Hier gilt die Umkehrung nicht, beispielsweise hat jede Drehung die Determinante 1.
  • Die Frobenius-Normalform bzw. die Invariantenteiler der charakteristischen Matrix Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle xI-A} , wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} die Einheitsmatrix der gleichen Dimension ist wie A, dagegen ist sogar eine trennende Invariante der Ähnlichkeitsoperation, d. h. zwei Matrizen sind genau dann ähnlich zueinander, wenn sie die gleiche Frobenius-Normalform haben.
  • Bettizahlen und Euler-Charakteristik sind topologische Invarianten, d. h. invariant unter Homöomorphismen.

Invarianten unter Operationen

Bei Gruppenoperationen spricht man ebenfalls von Invarianten: Ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine Punktmenge mit einer Operation der Gruppe Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} , so heißen die Punkte, die invariant bleiben,

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in X :\, gx=x\ \mathrm{f\ddot ur\ alle}\ g\in G}

Fixpunkte oder die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} -invarianten Punkte.

Allgemeiner ist jede Bahn durch einen Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\,,} die durch die Gruppenoperation entsteht,

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Gx=\{y\in X \mid\, y=gx\,, g\in G\}}

invariant unter der Gruppenoperation.

Weiterführende Themen

In der theoretischen Physik stellt das Noether-Theorem einen Zusammenhang zwischen Symmetrien der Wirkung und Invarianten der Zeitentwicklung her. Diese nennt man in der Physik Erhaltungsgrößen (Beispiele: Energie, Impuls, Drehimpuls). „Relativistische Invarianz“, d. h. Invarianz gegen Lorentztransformationen, besitzen viele (per Postulat: alle) physikalische Theorien, darunter an prominentester Stelle die Maxwellsche Elektrodynamik und natürlich die Relativitätstheorien Albert Einsteins. Im Gegensatz zur Mathematik steht aber letzten Endes nicht Axiomatik dahinter, sondern wenige, besonders aussagekräftige Experimente wie das Michelson-Morley-Experiment zur Konstanz der Lichtgeschwindigkeit.

Siehe auch

Literatur

Weblinks

Dieser Artikel basiert ursprünglich auf dem Artikel Invariante (Mathematik) aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.